DOI QR코드

DOI QR Code

Proton Conduction in Nonstoichiometric Σ3 BaZrO3 (210)[001] Tilt Grain Boundary Using Density Functional Theory

  • Kim, Ji-Su (School of Energy Materials and Chemical Engineering, KoreaTech) ;
  • Kim, Yeong-Cheol (Materials Research Center, KoreaTech)
  • Received : 2016.03.29
  • Accepted : 2016.05.02
  • Published : 2016.05.31

Abstract

We investigate proton conduction in a nonstoichiometric ${\Sigma}3$ $BaZrO_3$ (210)[001] tilt grain boundary using density functional theory (DFT). We employ the space charge layer (SCL) and structural disorder (SD) models with the introduction of protons and oxygen vacancies into the system. The segregation energies of proton and oxygen vacancy are determined as -0.70 and -0.54 eV, respectively. Based on this data, we obtain a Schottky barrier height of 0.52 V and defect concentrations at 600K, in agreement with the reported experimental values. We calculate the energy barrier for proton migration across the grain boundary core as 0.61 eV, from which we derive proton mobility. We also obtain the proton conductivity from the knowledge of proton concentration and mobility. We find that the calculated conductivity of the nonstoichiometric grain boundary is similar to those of the stoichiometric ones in the literature.

Acknowledgement

Supported by : National Research Foundation (NRF), KIST

References

  1. T. Takahashi and H. Iwahara, "Proton Conduction in Perovskite Type Oxide Solid Solution," Rev. Chim. Miner., 17 243-53 (1980).
  2. H. Iwahara, T. Esaka, H. Uchida, and N. Maeda, "Proton Conduction in Sintered Oxide and its Application to Steam Electrolysis for Hydrogen Production," Solid State Ionics, 3-4 359-63 (1981). https://doi.org/10.1016/0167-2738(81)90113-2
  3. K. D. Kreuer, "Proton-Conducting Oxides," Annu. Rev. Mater. Res., 33 333-59 (2003). https://doi.org/10.1146/annurev.matsci.33.022802.091825
  4. T. Norby and Y. Larring, "Concentration and Transport of Protons in Oxides," Curr. Opin. Solid State Mater. Sci., 2 [5] 593-99 (1997). https://doi.org/10.1016/S1359-0286(97)80051-4
  5. F. Iguchi, N. Sata, T. Tsurui, and H. Yugami, "Microstructures and Grain Boundary Conductivity of $BaZr_{1-x}Y_xO_3$ (x = 0.05, 0.10, 0.15) Ceramics," Solid State Ionics, 178 [7] 691-95 (2007). https://doi.org/10.1016/j.ssi.2007.02.019
  6. P. Babilo, T. Uda, and S. M. Haile, "Processing of Yttrium-doped Barium Zirconate for High Proton Conductivity," J. Mater. Res., 22 [5] 1322-30 (2007). https://doi.org/10.1557/jmr.2007.0163
  7. S. B. C. Duval, P. Holtappels, U. F. Vogt, E. Pomjakushina, K. Conder, U. Stimming, and T. Graule, "Electrical Conductivity of the Proton Conductor $BaZr_{0.9}Y_{0.1}O_{3-{\delta}}$ Obtained by High Temperature Annealing," Solid State Ionics, 178 [25] 1437-41 (2007). https://doi.org/10.1016/j.ssi.2007.08.006
  8. C. Kjolseth, H. Fjeld, O. Prytz, P. I. Dahl, C. Estournes, R. Haugsrud, and T. Norby, "Space-Charge Theory Applied to the Grain Boundary Impedance of Proton Conducting $BaZr_{0.9}Y_{0.1}O_{3-{\delta}}$," Solid State Ionics, 181 [5] 268-75 (2010). https://doi.org/10.1016/j.ssi.2010.01.014
  9. E. E. Helgee, A. Lindman, and G. Wahnstrom, "Origin of Space Charge in Grain Boundaries of Proton-Conducting $BaZrO_3$," Fuel Cells, 13 [1] 19-28 (2013). https://doi.org/10.1002/fuce.201200071
  10. J. M. Polfus, K. Toyoura, F. Oba, I. Tanaka, and R. Haugsrud, "Defect Chemistry of a $BaZrO_3$ ${\Sigma}3$ (111) Grain Boundary by First Principles Calculations and Space-Charge Theory," Phys. Chem. Chem. Phys., 14 [35] 12339-46 (2012). https://doi.org/10.1039/c2cp41101f
  11. A. Lindman, E. E. Helgee, J. Nyman, and G.Wahnstrom, "Oxygen Vacancy Segregation in Grain Boundaries of $BaZrO_3$ Using Interatomic Potentials," Solid State Ionics, 230 27-31 (2013). https://doi.org/10.1016/j.ssi.2012.07.001
  12. B. J. Nyman, E. E. Helgee, and G. Wahnstrom, "Oxygen Vacancy Segregation and Space-Charge Effects in Grain Boundaries of Dry and Hydrated $BaZrO_3$," Appl. Phys. Lett., 100 [6] 061903 (2012). https://doi.org/10.1063/1.3681169
  13. J.-H. Yang, D.-H. Kim, B.-K. Kim, and Y.-C. Kim, "Calculation of Proton Conductivity at the ${\Sigma}3(111)/[1{\overline{1}}0]$ Tilt Grain Boundary of Barium Zirconate Using Density Functional Theory," Solid State Ionics, 279 60-5 (2015). https://doi.org/10.1016/j.ssi.2015.07.018
  14. M.-Y. Kim, G. Duscher, N. D. Browning, K. Sohlberg, S. T. Pantelides, and S. J. Pennycook, "Nonstoichiometry and the Electrical Activity of Grain Boundaries in $SrTiO_3$," Phys. Rev. Lett., 86 [18] 184056-59 (2001).
  15. S.-Y. Choi, S. Joong, L. Kang, S.-Y. Chung, T. Yamamoto, and Y. Ikuhara, "Change in Cation Nonstoichiometry at Interfaces during Crystal Growth in Polycrystalline $BaTiO_3$," App. Phys. Lett., 88 [1] 011909-3 (2006). https://doi.org/10.1063/1.2162680
  16. J.-S. Kim, J.-H. Yang, B.-K. Kim, and Y.-C. Kim, "Study of ${\Sigma}3$ $BaZrO_3$ (210)[001] Tilt Grain Boundaries Using Density Functional Theory and a Space Charge Layer Model," J. Ceram. Soc. Jpn., 123 [4] 245-49 (2015). https://doi.org/10.2109/jcersj2.123.245
  17. G. Kresse and J. Hafner, "Ab initio Molecular Dynamics for Liquid Metals," Phys. Rev. B, 47 558-61 (1993). https://doi.org/10.1103/PhysRevB.47.558
  18. G. Kresse, Ab initio Molekular Dynamik fur flussige Metalle, in Ph.D. Thesis, Technische Universität Wien, Wien, 1993.
  19. G. Kresse and J. Furthmuller, "Efficiency of ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set," Comput. Mater. Sci., 6 [1] 15-50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
  20. G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-Wave Basis Set," Phys. Rev. B, 54 [16] 11169-86 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  21. G. Kresse and D. Joubert, "From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method," Phys. Rev. B, 59 [3] 1758-75 (1999).
  22. P. E. Blochl, "Projector Augmented-Wave Method," Phys. Rev. B, 50 [24] 17953-79 (1994). https://doi.org/10.1103/PhysRevB.50.17953
  23. J.P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 77 [18] 3865-68 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  24. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, "Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U study," Phys. Rev. B, 57 [3] 1505-9 (1998). https://doi.org/10.1103/PhysRevB.57.1505
  25. V. Stevanovic, S. Lany, X. Zhang, and A. Zunger, "Correcting Density Functional Theory for Accurate Predictions of Compound Enthalpies of Formation: Fitted Elemental-Phase Reference Energies," Phys. Rev. B, 85 [11] 115104-12 (2012). https://doi.org/10.1103/PhysRevB.85.115104
  26. H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin-Zone Integrations," Phys. Rev. B, 13 [12] 5188-92 (1976). https://doi.org/10.1103/PhysRevB.13.5188
  27. W. Tang, E. Sanville, and G. Henkelman, "A Grid-based Bader Analysis Algorithm without Lattice Bias," J. Phys.: Condens. Matter, 21 [8] 084204 (2009). https://doi.org/10.1088/0953-8984/21/8/084204
  28. G. Henkelman, B. P. Uberuaga, and H. Jonsson, "A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths," J. Chem. Phys., 113 [22] 9901-4 (2000). https://doi.org/10.1063/1.1329672
  29. K. Momma and F. Izumi, "VESTA: A Three-Dimensional Visualization System for Electronic and Structural Analysis," J. Appl. Cryst., 41 [3] 653-58 (2008). https://doi.org/10.1107/S0021889808012016
  30. S. Yamanaka, M. Fujikane, T. Hamaguchi, H. Muta, T. Oyama, T. Matsuda, S. Kobayashi, and K. Kurosaki, "Heat Capacities and Thermal Conductivities of Perovskite Type $BaZrO_3$ and $BaCeO_3$," J. Alloys Compd., 359 [1] 1-4 (2003). https://doi.org/10.1016/S0925-8388(03)00137-3
  31. R. A. De Souza, "The Formation of Equilibrium Space-Charge Zones at Grain Boundaries in the Perovskite Oxide $SrTiO_3$," Phys. Chem. Chem. Phys., 11 [43] 9939-69 (2009). https://doi.org/10.1039/b904100a
  32. H. G. Bohn and T. Schober, "Electrical Conductivity of the High-Temperature Proton Conductor $BaZr_{0.9}Y_{0.1}O_{2.95}$," J. Am. Ceram. Soc., 83 [4] 768-72 (2000).
  33. M. A. Gomez, M. Chunduru, L. Chigweshe, L. Foster, S. J. Fensin, K. M. Fletcher and L. E. Fernandez, "The Effect of Yttrium Dopant on the Proton Conduction Pathways of $BaZrO_3$, a Cubic Perovskite," J. Chem. Phys., 132 [21] 214709 (2010). https://doi.org/10.1063/1.3447377

Cited by

  1. vol.29, pp.18, 2017, https://doi.org/10.1021/acs.chemmater.7b02829
  2. from first-principles free energy calculations vol.5, pp.26, 2017, https://doi.org/10.1039/C7TA01080J