Investigation of LiO2 Adsorption on LaB1-xB'xO3(001) for Li-Air Battery Applications: A Density Functional Theory Study

Kwon, Hyunguk;Han, Jeong Woo

  • Received : 2016.04.12
  • Accepted : 2016.04.27
  • Published : 2016.05.31


Li-air batteries have received much attention due to their superior theoretical energy density. However, their sluggish kinetics on the cathode side is considered the main barrier to high performance. The rational design of electrode catalysts with high activity is therefore an important challenge. To solve this issue, we performed density functional theory (DFT) calculations to analyze the adsorption behavior of the $LiO_2$ molecule, which is considered to be a key intermediate in both the Li-oxygen reduction reaction (ORR) and the evolution reaction (OER). Specifically, to use the activity descriptor approach, the $LiO_2$ adsorption energy, which has previously been demonstrated to be a reliable descriptor of the cathode reaction in Li-air batteries, was calculated on $LaB_{1-x}B^{\prime}_xO_3$(001) (B, B' = Mn, Fe, Co, and Ni, x = 0.0, 0.5). Our fast screening results showed that $LaMnO_3$, $LaMn_{0.5}Fe_{0.5}O_3$, or $LaFeO_3$ would be good candidate catalysts. We believe that our results will provide a way to more efficiently develop new cathode materials for Li-air batteries.


Li-air battery cathode;$LaBO_3$ perovskite;$LiO_2$ adsorption;Density functional theory


  1. P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J.-M. Tarascon, "$Li-O_2$ and Li-S Batteries with High Energy Storage," Nat. Mater., 11 [1] 19-29 (2011).
  2. R. Black, B. Adams, and L. F. Nazar, "Non-Aqueous and Hybrid $Li-O_2$ Batteries," Adv. Energy Mater., 2 [7] 801-15 (2012).
  3. J. Christensen, P. Albertus, R. S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, J. Ahmed, and A. Kojic, "A Critical Review of Li/Air Batteries," J. Electrochem. Soc., 159 [2] R1-30 (2012).
  4. A. C. Luntz and B. D. McCloskey, "Nonaqueous Li-Air Batteries: A Status Report," Chem. Rev., 114 [23] 11721-50 (2014).
  5. Y. Lu, D. G. Kwabi, K. P. C. Yao, J. R. Harding, J. Zhou, L. Zuin, and Y. Shao-Horn, "The Discharge Rate Capability of Rechargeable $Li-O_2$ Batteries," Energy Environ. Sci., 4 [8] 2999-3007 (2011).
  6. S. S. Zhang, D. Foster, and J. Read, "Discharge Characteristic of A Non-Aqueous Electrolyte $Li/O_2$ Battery," J. Power Sources, 195 [4] 1235-40 (2010).
  7. A. Dobart, A. J. Paterson, J. Bao, and P. G. Bruce, "${\alpha}-MnO_2$ Nanowires: A Catalyst for the $O_2$ Electrode in Rechargeable Lithium Batteries," Angew. Chemie Int. Ed., 47 [24] 4521-24 (2008).
  8. A. Debart, J. Bao, G. Armstrong, and P. G. Bruce, "An $O_2$ Cathode for Rechargeable Lithium Batteries: The Effect of A Catalyst," J. Power Sources, 174 [2] 1177-11 (2007).
  9. Z. Peng, S. A. Freunberger, Y. Chen, and P. G. Bruce, "Reversible and Higher-Rate $Li-O_2$ Battery," Science, 337 [6094] 563-66 (2012).
  10. G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, "Lithium-Air Battery: Promise and Challenges," J. Phys. Chem. Lett., 1 [14] 2193-203 (2010).
  11. Y. Shao, S. Park, J. Xiao, J.-G. Zhang, Y. Wang, and J. Liu, "Electrocatalysts for Nonaqueous Lithium-Air Batteries: Status, Challenges, and Perspective," ACS Catal., 2 [5] 844-57 (2012).
  12. D. B. Meadowcroft, "Low-Cost Oxygen Electrode Material," Nature, 226 [5248] 847-48 (1970).
  13. J. O. Bockris and T. Otagawa, "The Electrocatalysis of Oxygen Evolution on Perovskites," J. Electrochem. Soc., 131 [2] 290-302 (1984).
  14. J. Suntivich, H. A. Gasteiger, N, Yabuuchi, H. Nakanishi, J. B. Goodenough, and Y. Shao-Horn, "Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-Air Batteries," Nat. Chem., 3 [7] 546-50 (2011).
  15. J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, and Y. Shao-Horn, "A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles," Science, 334 [6061] 1383-85 (2011).
  16. J.-J. Xu, D. Xu, Z.-L. Wang, H.-G. Wang, L.-L. Zhang, and X.-B. Zhang, "Synthesis of Perovskite-Based Porous $La_{0.75}Sr_{0.25}MnO_3$ Nanotubes as A Highly Efficient Electrocatalyst for Rechargeable Lithium-Oxygen Batteries," Angew. Chemie Int. Ed., 52 [14] 3887-90 (2013).
  17. Z. Fu, X. Lin, T. Huang, and A. Yu, "Nano-Sized $La_{0.8}Sr_{0.2}MnO_3$ as Oxygen Reduction Catalyst in Nonaqueous $Li/O_2$ Batteries," J. Solid State Electrochem., 16 [4] 1447-52 (2012).
  18. J.-J. Xu, Z.-L. Wang, D. Xu, F.-Z. Meng, and X.-B. Zhang, "3D Ordered Macroporous $LaFeO_3$ as Efficient Electrocatalyst for $Li-O_2$ Batteries with Enhanced Rate Capability and Cyclic Performance," Energy Environ. Sci., 7 [7] 2213-19 (2014).
  19. Y. Zhao, L. Xu, L. Mai, C. Han, Q. An, X. Xu, X. Liu, and Q. Zhang, "Hierarchical Mesoporous Perovskite $La_{0.5}Sr_{0.5}CoO_{2.91}$ Nanowires with Ultrahigh Capacity for Li-Air Batteries," Proc. Natl. Acad. Sci., 109 [48] 19569-74 (2012).
  20. J. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, and T. Bligaard, "Origin of the Overpotential for Oxygen Reduction at A Fuel-Cell Cathode," J. Phys. Chem. B, 108 [46] 17886-92 (2004).
  21. I. C. Man, H. -Y. Su,. F. Calle-Vallejo, H. A. Hansen, J. I. Martinez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, and J. K. Norskov, "Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces," ChemCatChem, 3 [7] 1159-65 (2011).
  22. R. Choi, J. Jung, G. Kim, K. Song, Y.-I. Kim, S. C. Jung, Y.-K. Han, H. Song, and Y.-M. Kang, "Ultra-Low Overpotential and High Rate Capability in $Li-O_2$ Batteries Through Surface Atom Arrangement of PdCu Nanocatalysts," Energy Environ. Sci., 7 [4] 1362-68 (2014).
  23. B. G. Kim, H.-J. Kim, S. Back, K. W. Nam, Y. Jung, Y.-K. Han, and J. W. Choi, "Improved Reversibility in Lithium-oxygen Battery: Understanding Elementary Reactions and Surface Charge Engineering of Metal Alloy Catalyst," Sci. Rep., 4 4225 (2014).
  24. N. B. Halck, V. Petrykin, P. Krtil, and J. Rossmeisl, "Beyond the Volcano Limitations in Electrocatalysis - Oxygen Evolution Reaction," Phys. Chem. Chem. Phys., 16 [27] 13682-88 (2014).
  25. P. Liao, J. A. Keith, and E. A. Carter, "Water Oxidation on Pure and Doped Hematite (0001) Surfaces: Prediction of Co and Ni as Effective Dopants for Electrocatalysis," J. Am. Chem. Soc., 134 [32] 13296-309 (2012).
  26. Z. Xu and J. R. Kitchin, "Relationships between the Surface Electronic and Chemical Properties of Doped 4d and 5d Late Transition Metal Dioxides," J. Chem. Phys., 142 [10] 104703-11 (2015).
  27. G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-wave Basis Set," Phys. Rev. B, 54 [16] 11169-86 (1996)
  28. G. Kresse and J. Furthmuller, "Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set," Comput. Mater. Sci., 6 [1] 15-50 (1996).
  29. J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 77 [18] 3865-68 (1996).
  30. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, "Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study," Phys. Rev. B, 57 [3] 1505-9 (1998).
  31. L. Wang, T. Maxisch, and G. Ceder, "Oxidation Energies of Transition Metal Oxides within the GGA+U Framework," Phys. Rev. B, 73 [19] 195107 (2006).
  32. H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin- Zone Integrations," Phys. Rev. B, 13 [12] 5188-92 (1976).
  33. G. Makov and M. Payne, "Periodic Boundary Conditions in ab initio Calculations," Phys. Rev. B, 51 [7] 4014-22 (1995).
  34. D. S. Sholl and J. A. Steckel, Density Functional Theory: A Practical Introduction; pp. 94-97, John Wiley & Sons, Inc., Hoboken, New Jersey, 2009.
  35. L. Andrews, "Infrared Spectrum, Structure, Vibrational Potential Function, and Bonding in the Lithium Superoxide Molecule $LiO_2$," J. Chem. Phys., 50 [10] 4288-99 (1969).
  36. R. F. W. Bader, "Atoms in Molecules," Acc. Chem. Res., 18 [1] 9-15 (1985).
  37. W. Tang, E. Sanville, and G. Henkelman, "A Grid-Based Bader Analysis Algorithm without Lattice Bias," J. Phys. Condens. Matter, 21 [8] 084204 (2009).
  38. G. K. P. Dathar, W. A. Shelton, and Y. Xu, "Trends in the Catalytic Activity of Transition Metals for the Oxygen Reduction Reaction by Lithium," J. Phys. Chem. Lett., 3 [7] 891-95 (2012).
  39. J. W. Han and B. Yildiz, "Enhanced One Dimensional Mobility of Oxygen on Strained $LaCoO_3(001)$ Surface," J. Mater. Chem, 21 [47] 18983-90 (2011).
  40. W. Yang, Z. Wang, Z. Yang, C. Xia, R. Peng, X. Wu, and Y. Lu, "Enhanced Catalytic Activity toward $O_2$ Reduction on Pt-Modified $La_{1-x}Sr_xCo_{1-y}Fe_yO_{3-{{\delta}}$ Cathode: A Combination Study of First-Principles Calculation and Experiment," ACS Appl. Mater. Interfaces, 6 [23] 21051-59 (2014)
  41. Y. A. Mastrikov, R. Merkle, E. Heifets, E. A. Kotomin, and J. Maier, "Pathways for Oxygen Incorporation in Mixed Conducting Perovskites: A DFT-Based Mechanistic Analysis for (La, Sr)$MnO_{3-{\delta}}$," J. Phys. Chem. C, 114 [7] 3017-27 (2010).
  42. Y. -L. Lee, J. Kleis, J. Rossmeisl and D. Morgan, "Ab initio Energetics of $LaBO_3(001)$ (B = Mn, Fe, Co and Ni) for Solid Oxide Fuel Cell Cathodes," Phys. Rev. B, 80 [22] 224101-20 (2009).
  43. Y. Xu and W. A. Shelton, "$O_2$ Reduction by Lithium on Au(111) and Pt(111)," J. Chem. Phys., 133 [2] 024703-9 (2010).


Supported by : National Research Foundation of Korea (NRF)