DOI QR코드

DOI QR Code

Quantum Mechanical Simulation for the Analysis, Optimization and Accelerated Development of Precursors and Processes for Atomic Layer Deposition (ALD)

Mustard, Thomas Jeffrey Lomax;Kwak, Hyunwook Shaun;Goldberg, Alexander;Gavartin, Jacob;Morisato, Tsuguo;Yoshidome, Daisuke;Halls, Mathew David

  • Received : 2016.04.26
  • Accepted : 2016.05.16
  • Published : 2016.05.31

Abstract

Continued miniaturization and increasingly exact requirements for thin film deposition in the semiconductor industry is driving the search for new effective, efficient, selective precursors and processes. The requirements of defect-free, conformal films, and precise thickness control have focused attention on atomic layer deposition (ALD). ALD precursors so far have been developed through a trial-and-error experimental approach, leveraging the expertise and tribal knowledge of individual research groups. Precursors can show significant variation in performance, depending on specific choice of co-reactant, deposition stage, and processing conditions. The chemical design space for reactive thin film precursors is enormous and there is urgent need for the development of computational approaches to help identify new ligand-metal architectures and functional co-reactants that deliver the required surface activity for next-generation thin-film deposition processes. In this paper we discuss quantum mechanical simulation (e.g. density functional theory, DFT) applied to ALD precursor reactivity and state-of-the-art automated screening approaches to assist experimental efforts leading toward optimized precursors for next-generation ALD processes.

Keywords

Quantum chemistry;Atomic layer deposition;ALD;Chemical reactivity;Thin film deposition

References

  1. S. M. George, "Atomic Layer Deposition: An Overview," Chem. Rev., 110 [1] 111-31 (2010). https://doi.org/10.1021/cr900056b
  2. P. H.-Y. Cheong, C. Y. Legault, J. M. Um, N. Celebi-Olcum, and K. N. Houk, "Quantum Mechanical Investigations of Organocatalysis: Mechanisms, Reactivities, and Selectivities," Chem. Rev., 111 [8] 5042-137 (2011). https://doi.org/10.1021/cr100212h
  3. K. P. Jang, G. E. Hutson, R. C. Johnston, E. O. McCusker, P. H.-Y. Cheong, and K. A. Scheidt, "Asymmetric Homoenolate Additions to Acyl Phosphonates through Rational Design of a Tailored N-Heterocyclic Carbene Catalyst," J. Am. Chem. Soc., 136 [1] 76-9 (2014). https://doi.org/10.1021/ja410932t
  4. B. J. Rooks, M. R. Haas, D. Sepulveda, T. Lu, and S. E. Wheeler, "Prospects for the Computational Design of Bipyridine N,N'-Dioxide Catalysts for Asymmetric Propargylation Reactions," ACS Catal., 5 [1] 272-80 (2015). https://doi.org/10.1021/cs5012553
  5. S. D. Elliott, "Atomic-Scale Simulation of ALD Chemistry," Semicond. Sci. Technol., 27 [7] 074008 (2012). https://doi.org/10.1088/0268-1242/27/7/074008
  6. Materials Science Suite Version 2.1, Schrodinger, LLC, New York, NY, 2016.
  7. Jaguar, Version 9.1, Schrodinger, LLC, New York, NY, 2016.
  8. A. D. Bochevarov, E. Harder, T. F. Hughes, J. R. Greenwood, D. Braden, D. M. Philipp, D. Rinaldo, M. D. Halls, J. Zhang, and R. A. Friesner, "Jaguar: A High-Performance Quantum Chemistry Software Program with Strengths in Life and Materials Sciences," Int. J. Quantum Chem., 113 [18] 2110-42 (2013). https://doi.org/10.1002/qua.24481
  9. Y. Zhao and D. G. Truhlar, "A New Local Density Functional for Main-Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions," J. Chem. Phys., 125 [19] 194101 (2006). https://doi.org/10.1063/1.2370993
  10. A. D. Becke, "Density-Functional Thermochemistry. III. The Role of Exact Exchange," J. Chem. Phys., 98 [7] 5648- 52 (1993). https://doi.org/10.1063/1.464913
  11. C. Lee, C. W. Yang, and R. G. Parr, "Development of the Colle-Salvetti Correlation-energy Formula into a Functional of the Electron Density," Phys. Rev. B, 37 [2] 785 (1988). https://doi.org/10.1103/PhysRevB.37.785
  12. R. Ditchfield, W. J. Hehre, and J. A. Pople, "Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules," J. Chem. Phys., 54 [2] 724-28 (1971). https://doi.org/10.1063/1.1674902
  13. R. L. Puurunen, "Surface Chemistry of Atomic Layer Deposition: A Case Study for the Trimethylaluminum/Water Process," J. App. Phys., 97 [12] 121301 (2005). https://doi.org/10.1063/1.1940727
  14. Y. Widjaja and C. B. Musgrave, "Quantum Chemical Study of the Mechanism of Aluminum Oxide Atomic Layer Deposition," Appl. Phys. Lett., 80 [18] 3304-6 (2002). https://doi.org/10.1063/1.1473237
  15. S. D. Elliott, "Atomic-Scale Simulation of ALD Chemistry," Semicond. Sci. Technol., 27 [7] 074008 (2012). https://doi.org/10.1088/0268-1242/27/7/074008
  16. M. M. Frank, Y. J. Chabal, and G. D. Wilk, "Nucleation and Interface Formation Mechanisms in Atomic Layer Deposition of Gate Oxides," Appl. Phys. Lett., 82 [26] 4758-60 (2003). https://doi.org/10.1063/1.1585129
  17. M. D. Halls and K. Raghavachari, "Atomic Layer Deposition of $Al_2O_3$ on H-Passivated Si. I. Initial Surface Reaction Pathways with H/Si(100)-2x1," J. Chem. Phys., 118 [22] 10221-26 (2003). https://doi.org/10.1063/1.1571513
  18. K. Raghavachari and M. D. Halls, "Quantum Chemical Studies of Semiconductor Surface Chemistry Using Cluster Models,", Mol. Phys., 102 [4] 381-93 (2004). https://doi.org/10.1080/00268970410001675590
  19. M. M. Frank, Y. J. Chabal, and G. D. Wilk, "In Situ Spectroscopic Approach to Atomic Layer Deposition," pp. N2.4.1-N2.4.6 in MRS Proceedings, Volume 745, Cambridge University Press, Cambridge, UK, 2002.
  20. J. Kwon, M. Dai, M. D. Halls, and Y. J. Chabal, "Detection of a Formate Surface Intermediate in the Atomic Layer Deposition of High-K Dielectrics Using Ozone," Chem. Mater., 20 [10] 3248-50 (2008). https://doi.org/10.1021/cm703667h
  21. M. Dai, J. Kwon, M. D. Halls, R. G. Gordon, and Y. J. Chabal, "Surface and Interface Processes during Atomic Layer Deposition of Copper on Silicon Oxide," Langmuir, 26 [6] 3911-17 (2010). https://doi.org/10.1021/la903212c
  22. J. Kwon, M. Dai, M. D. Halls, E. Langereis, Y. J. Chabal, and R. G. Gordon, "In Situ Infrared Characterization during Atomic Layer Deposition of Lanthanum Oxide," J. Phys. Chem. C, 113 [2] 654-60 (2009). https://doi.org/10.1021/jp806027m
  23. B. A. Sperling, W. A. Kimes, and J .E. Maslar, "Quantitative Infrared Spectroscopy of Tetrakis-(dimethylamido) Titanium for Process Measurements," ECS J. Sol. State Sci. and Tech., 3 [3] P26-31 (2014).
  24. M. D. Halls, J. Velkovski, and H. B. Schlegel, "Harmonic Frequency Scaling Factors for Hartree-Fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2 with the Sadlej pVTZ Electric Property Basis Set," Theor. Chem. Acc., 105 [6] 413-21 (2001). https://doi.org/10.1007/s002140000204
  25. W.-J. Lee, J.-H. Lee, C. O. Park, Y.-S. Lee, S.-J. Shin, and S.-K. Rha, "A Comparative Study on the Si Precursors for the Atomic Layer Deposition of Silicon Nitride Thin Films," J. Kor. Phys. Soc., 45 1352 (2004).
  26. W.-J. Lee, U.-J. Kim, C.-H. Han, M.-H. Chun, S.-K. Rha and Y.-S. Lee, "Characteristics of Silicon Nitride Thin Films Prepared by Using Alternating Exposures of $SiH_2Cl_2$ and $NH_3$", J. Kor. Phys. Soc., 47 S598 (2005).
  27. S. Yokoyama, N. Ikeda, K. Kajikawa, and Y. Nakashima, "Atomic-layer Selective Deposition of Silicon Nitride on Hydrogen-Terminated Si Surfaces," Appl. Surf. Sci., 130-132 352 (1998). https://doi.org/10.1016/S0169-4332(98)00083-X
  28. J. W. Klaus, A. W. Ott, A. C. Dillon, and S. M. George, "Atomic Layer Controlled Growth of $Si_3N_4$ Films Using Sequential Surface Reactions," Surf. Sci., 418 [1] L14-9 (1998). https://doi.org/10.1016/S0039-6028(98)00705-5
  29. S. Morishita, S. Sugahara, and M. Matsumura, "Atomic-Layer Chemical-Vapor-Deposition of Silicon-Nitride, Appl. Surf. Sci., 112 198-204 (1997). https://doi.org/10.1016/S0169-4332(96)01006-9
  30. K. Park, W.-D. Yun, B.-J. Choi, H.-D. Kim, W.-J. Lee, S.-K. Rha, and C.O. Park, "Growth Studies and Characterization of Silicon Nitride Thin Films Deposited by Alternating Exposures to $Si_2Cl_6$ And $NH_3$," Thin Solid Films, 517 [14] 3975-78 (2009). https://doi.org/10.1016/j.tsf.2009.01.118
  31. K. Lejaeghere, S. Cottenier, and V. Van Speybroeck, "Ranking the Stars: A Refined Pareto Approach to Computational Materials Design," Phys. Rev. Lett., 111 [7] 075501 (2013). https://doi.org/10.1103/PhysRevLett.111.075501

Cited by

  1. Atomic Layer Deposition of Silicon Nitride Thin Films: A Review of Recent Progress, Challenges, and Outlooks vol.9, pp.12, 2016, https://doi.org/10.3390/ma9121007
  2. Chemical Processes Involved in Atomic Layer Deposition of Gallium Sulfide: Insights from Theory vol.121, pp.11, 2017, https://doi.org/10.1021/acs.jpcc.6b12242