Hot-Injection Thermolysis of Cobalt Antimony Nanoparticles with Co(II)-Oleate and Sb(III)-Oleate

  • Ahn, Jong-Pil ;
  • Kim, Min-Suk ;
  • Kim, Se-Hoon ;
  • Lee, Byung-Ha ;
  • Kim, Do-Kyung ;
  • Park, Joo-Seok
  • Received : 2016.03.14
  • Accepted : 2016.04.26
  • Published : 2016.05.31


A novel strategy for the synthesis of $CoSb_2$ nanoparticles is demonstrated via preparation of novel organometallic complexes. Hydrated cobalt oleate (CoOl) and non-hydrated antimony oleate (SbOl) complexes are synthesized as precursors. The $CoSb_2$ nanoparticles are prepared by hot injection, which involves thermolysis of CoOl and SbOl in a non-coordinating solvent at $320^{\circ}C$. The coordination modes and distinct thermal behaviors of the intermediate non-hydrated SbOl complexes are comparatively investigated by thermo-analytical techniques. When the reaction temperature is increased, the particle size is found to increase linearly. The crystallinity of the $CoSb_2$ nanoparticles prepared at $250^{\circ}C$ is amorphous phase without any peaks. $CoSb_2$ structural peaks start to appear at $300^{\circ}C$ and dominant peaks with high crystallinity are synthesized at $320^{\circ}C$. The potential chemical structures of non-hydrated SbOl and their reaction mechanisms by thermolysis are elucidated. The elemental composition and crystallographic structure of $CoSb_2$ nanoparticles suggest a bimodal interaction of the organic shell and the nanoparticle surface, with a chemical absorbed inner layer and physically absorbed outer layer of carboxylic acid.


Solution process;Coordinate;$CoSb_2$ nanoparticles;Thermolysis;Hot-injection


  1. S. Yehezkel, M. Auinat, N. Sezin, D. Starosvetsky, and Y. Ein-Eli, "Bundled and Densified Carbon Nanotubes (CNT) Fabrics as Flexible Ultra-Light Weight Li-ion Battery Anode Current Collectors," J. Power Sources, 312 109-15 (2016).
  2. B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, and R. P. Raffaelle, "Carbon Nanotubes for Lithium Ion Batteries," Energy Environ. Sci., 2 [6] 638-54 (2009).
  3. X. He, J. Wang, H. Jia, R. Kloepsch, H. Liu, K. Beltrop, and J. Li, "Ionic Liquid-Assisted Solvothermal Synthesis of Hollow Mn2O3 Anode and $LiMn_2O_4$ Cathode Materials for Li-ion Batteries," J. Power Sources, 293 306-311 (2015).
  4. A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, and W. van Schalkwijk, "Nanostructured Materials for Advanced Energy Conversion and Storage Devices," Nat. Mater., 4 [5] 366-77 (2005).
  5. H. Li, L. Shi, Q. Wang, L. Chen, and X. Huang, "Nano-Alloy Anode for Lithium Ion Batteries," Solid State Ionics, 148 [3-4] 247-58 (2002).
  6. J. Leibowitz, E. Allcorn, and A. Manthiram, "$FeSn_2$-TiC Nanocomposite Alloy Anodes for Lithium Ion Batteries," J. Power Sources, 295 125-30 (2015).
  7. B. H. Kim, N. Lee, H. Kim, K. An, Y. I. Park, Y. Choi, K. Shin, Y. Lee, S. G. Kwon, H. B. Na, J.-G. Park, T.-Y. Ahn, Y.-W. Kim, W. K. Moon, S. H. Choi, and T. Hyeon, "Large-Scale Synthesis of Uniform and Extremely Small-Sized Iron Oxide Nanoparticles for High-Resolution T1 Magnetic Resonance Imaging Contrast Agents," J. Am. Chem. Soc., 133 [32] 12624-31 (2011).
  8. J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, and T. Hyeon, "Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals," Nat. Mater., 3 [12] 891-95 (2004).
  9. A. P. Herrera, L. Polo-Corrales, E. Chavez, J. Cabarcas-Bolivar, O. N. C. Uwakweh, and C. Rinaldi, "Influence of Aging Time of Oleate Precursor on the Magnetic Relaxation of Cobalt Ferrite Nanoparticles Synthesized by the Thermal Decomposition Method," J. Magn. Magn. Mater., 328 41-52 (2013).
  10. M. Lin and D. Kim, "In situ Thermolysis of Magnetic Nanoparticles Using Non-Hydrated Iron Oleate Complex," J. Nanopart. Res., 14 [2] 1-13 (2012).
  11. A. Repko, D. Niznansky, and J. Poltierova-Vejpravova, "A Study of Oleic Acid-based Hydrothermal Preparation of CoFe2O4 Nanoparticles," J. Nanopart. Res., 13 [10] 5021-31 (2011).
  12. H. Yang, H. Zhou, C. Zhang, X. Li, H. Hu, H. Wu, and S. Yang, "Water-Soluble Magnetic CoO Nanocrystals Functionalized with Surfactants as T2-Weighed MRI Contrast Agentsin Vitro," Dalton Trans., 40 [14] 3616-21 (2011).
  13. G. Clavel, M. G. Willinger, D. Zitoun, and N. Pinna, "Solvent Dependent Shape and Magnetic Properties of Doped ZnO Nanostructures," Adv. Funct. Mater., 17 [16] 3159-69 (2007).
  14. H. Shao, H. Lee, Y. Huang, K. InYong, and C. Kim, "Control of Iron Nanoparticles Size and Shape by Thermal Decomposition Method," IEEE Trans. Magn., 41 [10] 3388-90 (2005).
  15. J. Schallibaum, F. H. Dalla Torre, W. R. Caseri, and J. F. Loffler, "Large-Scale Synthesis of Defined Cobalt Nanoparticles and Magnetic Metal-Polymer Composites," Nanoscale, 1 [3] 374-81 (2009).
  16. S. H. Sun and C. B. Murray, "Synthesis of Monodisperse Cobalt Nanocrystals and their Assembly into Magnetic Superlattices (invited)," J. Appl. Phys., 85 [8] 4325-30 (1999).
  17. J. Xie, G. S. Cao, X. B. Zhao, Y. D. Zhong, and M. J. Zhao "Electrochemical Performances of Nanosized Intermetallic Compound $CoSb_2$ Prepared by the Solvothermal Route," J. Electrochem. Soc., 151 [11] A1905-10 (2004).
  18. J. Xie, X. B. Zhao, G. S. Cao, Y. D. Zhong, M. J. Zhao, and J. P. Tu, "Solvothermal Synthesis of Nanosized CoSb2 Alloy Anode for Li-ion Batteries," Electrochim. Acta, 50 [9] 1903-1907 (2005).
  19. P. Amornpitoksuk and S. Suwanboon, "Synthesis, Characterization and Thermal Study of $CoSb_2$ Semiconductor by Mechanical Alloying," J. Alloys Compd., 473 [1-2] 373-75 (2009).
  20. B. Rajesh Babu, M. S. R. Prasad, K. V. Ramesh, and Y. Purushotham, "Structural and Magnetic Properties of $Ni_{0.5}Zn_{0.5}Al_xFe_{2-x}O_4$ Nano Ferrite System," Mater. Chem. Phys., 148 [3] 585-91 (2014).
  21. L. M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink, B. D. Stein, and B. Dragnea, "Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation," Chem. Mater., 19 [15] 3624-32 (2007).
  22. N. Shukla, C. Liu, P. M. Jones, and D. Weller, "FTIR Study of Surfactant Bonding to FePt Nanoparticles," J. Magn. Magn. Mater., 266 [1-2] 178-84 (2003).