DOI QR코드

DOI QR Code

Effects of Gardeniae Fructus on the metabolic process of antioxidant and anti-inflammation by JNK and NF-kB

치자(梔子)가 JNK와 NF-kB를 통한 항산화와 항염증의 대사과정에 미치는 영향

  • Received : 2016.04.04
  • Accepted : 2016.05.05
  • Published : 2016.05.25

Abstract

Objectives : The purpose of this study is to observe the effects of Gardeniae Fuctus(GF) on the metabolic process of antioxidant and anti-inflammation. Methods : 4-HNE was injected into PC-12 cell to cause oxidative stress-induced inflammatory response, and then a western blot was conducted to observe the expression of Nuclear Factor-kB (NF-kB) and c-Jun N-terminal kinase (JNK) protein that are important factors involved with inflammation. Results : 1. The Gardeniae Fuctus water extract 50 ㎍ and 100 ㎍ significantly suppressed the increase in JNK protein expression in PC-12 cell. 2. The Gardeniae Fuctus water extract 50 ㎍, 100 ㎍ and 200 ㎍ significantly suppressed the increase in NF-kB protein expression in PC-12 cell. Conclusion : These results suggest that the Gardeniae Fuctus water extract has antioxidative and anti-inflammatory activity through suppressing the activity of JNK and NF-kB.

Keywords

Gardeniae Fuctus;4-HNE;JNK;NF-kB

References

  1. Issac TT, Dokainish H, Lakkis NM. Role of inflammation in initiation and perpetuation of atrial fibrillation : a systematic review of the published data. J Am Coll Cardiol. 2007;50:2021-8. https://doi.org/10.1016/j.jacc.2007.06.054
  2. Lawrence T, Willoughby DA, Gilroy DW. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol. 2002;2:787-95. https://doi.org/10.1038/nri915
  3. Nathan C. Points of control in inflammation. Nature. 2002;420:846-52. https://doi.org/10.1038/nature01320
  4. Xie QW, Kashiwabara Y, Nathan C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem. 1994;269(7):4705-8.
  5. Rhee SG, Bae YS, Lee SR, Kwon J. Hydrogen peroxide : a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE. 2000;2000:pe1. https://doi.org/10.1126/stke.2000.18.pe1
  6. Kaplanski G, Marin V, Montero-Julian F, Mantovani A, Farnarier C. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol. 2003;24:25-9. https://doi.org/10.1016/S1471-4906(02)00013-3
  7. Herbalogy Editorial Committee of Korean Medicine. Boncho-Hak. Seoul:Younglimsa. 2008;207-9.
  8. Her J. NaeKyung-Pyun of Donguibogam. Seoul:Yeogang. 2005;3068.
  9. Shin YW, Kim DH, Kim JN. Studies on the processing of crude drugs (VII) – On the constituents and biological activities of Gardeniae Fructus by processing. K J Pharmacogn. 2003;34:45-54.
  10. Lee SJ, Oh PS, Lim KT. Hepatoprotective and hypolipidaemic effects of glycoprotein isolated from Gardenia jasminoides ellis in mice. Clin Exp Pharmacol Physiol. 2006;33(10):925-33. https://doi.org/10.1111/j.1440-1681.2006.04466.x
  11. Lee DU, Park CH, Kang SI, Min EG, Han YN, Lee CK. Isolation of the component transformed into blue pigments by aerobic bacteria in the fruits of Gardenia jasminoides. K J Pharmacogn. 1998;29(3):204-8.
  12. Kuratsune H, Umigai N, Takeno R, Kajimoto Y, Nakano T. Effect of crocetin from Gardenia jasminoides Ellis on sleep: a pilot study. Phytomedicine. 2010;17(11):840-3. https://doi.org/10.1016/j.phymed.2010.03.025
  13. Toriizuka K, Toriizuka K, Kamiki H, Ohmura N, Fujii M, Hori Y, et al. Anxiolytic effect of Gardeniae fructus-extract containing active ingredient from kamishoyosan(KSS), a Japanese traditional kampo medicine. Life Sciences. 2005;77(24):3010-20. https://doi.org/10.1016/j.lfs.2004.12.054
  14. Lin YJ, Lai CC, Lai CH, Sue SC, Lin TH, Hsu WY, et al. Inhibition of enterovirus 71 infections and viral IRES activity by Fructus gardeniae and geniposide. Eur J Med Chem. 2013;62:206-13. https://doi.org/10.1016/j.ejmech.2012.12.038
  15. Fu Y, Liu B, Liu J, Liu Z, Liang D, Li F, et al. Geniposide, from Gardenia jasminoides Ellis, inhibits the inflammatory response in the primary mouse macrophages and mouse models. Int Immunopharmacol. 2012;14:792-8. https://doi.org/10.1016/j.intimp.2012.07.006
  16. Shi Q, Cao J, Zhao H, Liu Z, Ran J, Zheng X, et al. Geniposide suppresses LPS-induced nitric oxide, PGE2 and inflammatory cytokine by downregulating NF-κB, MAPK and AP-1 signaling pathways in macrophages. Int Immunopharmacol. 2014;20(2):298-306. https://doi.org/10.1016/j.intimp.2014.04.004
  17. Dai MM, Wu H, Li H, Chen J, Chen JY, Hu SL, et al. Effects and mechanisms of Geniposide on rats with adjuvant arthritis. Int Immunopharmacol. 2014;20(1):46-53. https://doi.org/10.1016/j.intimp.2014.02.021
  18. Chen QC, Zhang WY, Youn UJ, Kim HJ, Lee IS, Jung HJ, et al. Iridoid glycosides from Gardeniae Fructus for treatment of ankle sprain. Phytochem. 2009;70(6):779-84. https://doi.org/10.1016/j.phytochem.2009.03.008
  19. Deng Y, Guan M, Xie X, Yang X, Xiang H, Li H, et al. Geniposide inhibits airway inflammation and hyperresponsiveness in a mouse of asthma. Int Immounopharmacol. 2013;17:561-7. https://doi.org/10.1016/j.intimp.2013.06.028
  20. Shindo S, Hosokawa Y, Hosokaya I, Ozaki K, Matsuo T. Genipin inhibits MMP-1 and MMP-3 release from TNF-a-stimulated human periodontal ligament cells. Biochemie. 2014;107:391-5. https://doi.org/10.1016/j.biochi.2014.10.008
  21. Yamazaki M, Chiba K. Genipin exhibits neurotrophic effects through a common signaling pathway in nitric oxide synthase-expressing cells. Eur J Pharmacol. 2008;581:255. https://doi.org/10.1016/j.ejphar.2007.12.001
  22. Lee JH, Lee DU, Jeong CS. Gardenia jasminoides Ellis ethanol extract and its constituents reduce the risks of gastritis and reverse gastric lesions in rat. Food Chem Toxicol. 2009;47:1127-31. https://doi.org/10.1016/j.fct.2009.01.037
  23. Xu GL, Li G, Ma HP, Zhong H, Liu F, Ao GZ. Preventive Effect of Crocin in Inflamed Animals and in LPS-Challenged RAW 264.7 Cells. J Agric Food Chem. 2009;57:8325-30. https://doi.org/10.1021/jf901752f
  24. Yang R, Yang L, Shen X, Cheng W, Zhao B, Ali KH, et al. Suppression of NF-κB pathway by crocetin contributes to attenuation of lipo polysaccharide-induced acute lung injury in mice. Eur J Pharmacol. 2012;674(2-3):391-6. https://doi.org/10.1016/j.ejphar.2011.08.029
  25. Yamauchi M, Tsuruma K, Imai S, Nakanishi T, Umigai N, Shimazawa M, et al. Crocetin prevents retinal degeneration induced by oxidative and endoplasmic reticulum stresses via inhibition of caspase activity. Eur J Pharmacol. 2011;650:110-9. https://doi.org/10.1016/j.ejphar.2010.09.081
  26. Esterbauer H, Schaur RJ, Zollner H. Chemistry and Biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biol. 1991;11(1):81-128. https://doi.org/10.1016/0891-5849(91)90192-6
  27. Jürgens G, Chen Q, Esterbauer H, Mair S, Ledinski G, Dinges HP. Immunostaining of human autopsy aortas with antibodies apolipoprotein B an apoprotein(a). Arterioscler Thromb. 1993;13(11):1689-99. https://doi.org/10.1161/01.ATV.13.11.1689
  28. Awasthi YC, Sharma R, Awasthi S. Self-regulatory role of 4-hydroxynonenal in signaling for stress-induced programmed cell death. Free Radical Biol Med. 2008;45(2):111-8. https://doi.org/10.1016/j.freeradbiomed.2008.04.007
  29. Cheng JZ, Singhal SS, Saini H, Singhal J, Piper JT, Vankuijk FJGM, et al. Effects of mGST A4 transfection on 4-hydroxynonenal-mediated apoptosis and differentiation of K562 human erythroleukemia cells. Archives of Biochemistry and Biophysics. 1999;372(1):29-36. https://doi.org/10.1006/abbi.1999.1479
  30. Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cellular Physiology and Biochemistry. 2001;11(4):173-86. https://doi.org/10.1159/000047804
  31. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 2005;120:649-61. https://doi.org/10.1016/j.cell.2004.12.041
  32. Liu Y, Min W. Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner. Clic Res. 2002;90:1259-66.
  33. Athman R, Philpott D. Innate immunity via Toll-like receptors and Nod proteins. Curr Opin Microbiol. 2004;7:25-32. https://doi.org/10.1016/j.mib.2003.12.013
  34. Arbabi S, Maier RV. Mitogen-activated protein kinases. Crit Care Med. 2002;30(1):S74-9. https://doi.org/10.1097/00003246-200201001-00010
  35. Shakoory B, Fitzgerald SM, Lee SA, Chi DS, Krishnaswamy G. The role of human mast cell-derived cytokines in eosinophil biology. J Interferon Cytokine Res. 2004;24(5):271-81. https://doi.org/10.1089/107999004323065057
  36. Kriete A, Mayo KL. Atypical pathways of NF-kB activation and aging. Exp Gerontol. 2009;44(4):250–5. https://doi.org/10.1016/j.exger.2008.12.005
  37. Perkins ND. Integrating cell-signalling pathways with NF-kappa B and IKK function. Nat Rev Mol Cell Biol. 2007;8:49-62. https://doi.org/10.1038/nrm2083
  38. Kim ST, Lee JC, Lee BK, Lee KS, Lyu JH, Lee YC. Comparison of geniposide quantification and antioxidant effect among the various parts of Gardeniae fructus. Kor J Herbology. 2013;28(4):17-23. https://doi.org/10.6116/kjh.2013.28.4.17