A Portable Surface Plasmon Resonance Biosensor for Rapid Detection of Salmonella typhimurium

  • Nguyen, Hoang Hiep ;
  • Yi, So Yeon ;
  • Woubit, Abdela ;
  • Kim, Moonil
  • Received : 2016.05.15
  • Accepted : 2016.05.30
  • Published : 2016.05.30


Here, the rapid detection of Salmonella typhimurium by a portable surface plasmon resonance (SPR) biosensor in which the beam from a diode laser is modulated by a rotating mirror is reported. Using this system, immunoassay based on lipopolysaccharides (LPS)-specific monoclonal anti-Salmonella antibody was performed. For the purpose of orientation-controlled immobilization of antibodies on the SPR chip surface, the cysteine-mediated immobilization method, which is based on interaction between a gold surface and a thiol group (-SH) of cysteine, was adopted. As a result, using the portable SPR-based immunoassay, we detected S. typhimurium in the range from 10^7 CFU/mL to 10^9 CFU/mL within 1 hour. The results indicate that the portable SPR system could be potentially applied for general laboratory detection as well as on-site monitoring of foodborne, clinical, and environmental agents of interest.


Biosensor;surface plasmon resonance;portable SPR;Salmonella typhimurium;Foodborne pathogen


  1. M. M. Arshad, M. J. Wilkins, F. P. Downes, M. H. Rahbar, R. J. Erskine, M. L. Boulton, and A. M. Saeed, Foodborne Pathog. Dis. 4, 16 (2007).
  2. H. L. Alakomi, and M. Saarela, Qual. Assur. Saf. Crop. 1, 142e152 (2009).
  3. K. G. Maciorowski, P. Herrera, F. T. Jones, S. D. Pillai, and S. C. Ricke, Vet. Res. Commun. 30, 127e137 (2006).
  4. J. M. Eijkelkamp, H. J. M. Aarts, and H. J. van der Fels-Klerx, Food Anal. Method. 2, 1 (2009).
  5. B. Malorny, J. Hoorfar, C. Bunge, and R. Helmuth, Appl. Environ. Microbiol. 69, 290 (2003).
  6. M. A. Mozola and J. AOAC Int. 89, 517 (2006).
  7. A. Woubit, T. Yehualaeshet, S. Roberts, M. Graham, M. Kim, and T. Samuel, J. Food Prot. 76, 1948 (2013).
  8. H. H. Nguyen, J. Park, S. Kang, and M. Kim, Sensors 15, 10481 (2015).
  9. J. Homola, Anal. Bioanal. Chem. 377, 528 (2003).
  10. M. A. Cooper, Anal. Bioanal. Chem. 377, 834 (2003).
  11. S. D. Mazumdar, B. Barlen, P. Kampfer, and M. Keusgen, Biosens. Bioelectron. 25, 967 (2010).
  12. G. C. M. B. Bokken, R. J. Corbee, F. Knapen, and A. A. Bergwerff, FEMS Microbiol. Lett. 222, 75 (2003).
  13. D. Zhang, Y. Yan, Q. Li, T. Yu, W. Cheng, L. Wang, H. Ju, and S. Ding, J. Biotechnol. 160, 123 (2012).
  14. J. M. Lee, H. K. Park, Y. Jung, J. K. Kim, S. O. Jung, and B. H. Chung, Anal. Chem. 79, 2680 (2007).
  15. Y. B Shin, H. M. Kim, Y. Jung, and B. H. Chung, Sensor. Actuat. B-Chem. 150, 1 (2010).
  16. B. Barlen, S. D. Mazumdar, O. Lezrich, P. Kampfer, and M. Keusgen, Sensors 7, 1427 (2007).

Cited by

  1. Microcontact Imprinted Plasmonic Nanosensors: Powerful Tools in the Detection of Salmonella paratyphi vol.17, pp.6, 2017,
  2. On-Site Detection of Aflatoxin B1 in Grains by a Palm-Sized Surface Plasmon Resonance Sensor vol.18, pp.2, 2018,


Supported by : National Research Council of Science & Technology (NST), KRIBB Initiative Research Program (KRIBB)