Properties of GaN Film Grown on AlN/PSS Template by Hydride Vapor Phase Epitaxy

AlN/PSS Template 위에 HVPE로 성장한 GaN 막의 특성

Son, Hoki;Lee, YoungJin;Lee, Mijai;Kim, Jin-Ho;Jeon, Dae-Woo;Hwang, Jonghee;Lee, Hae-Yong

  • Received : 2016.03.31
  • Accepted : 2016.05.24
  • Published : 2016.06.01


In this paper, GaN film was grown on AlN/PSS by hydride vapor phase epitaxy compared with GaN on planar sapphire. Thin AlN layer for buffer layer was deposited on patterned sapphire substrate (PSS) by metal organic chemical vapor deposition. Surface roughness of GaN/AlN on PSS was remarkably decreased from 28.31 to 5.53 nm. Transmittance of GaN/AlN grown on PSS was lower than that of planar sapphire at entire range. XRD spectra of GaN/AlN grown on PSS corresponded the wurzite structure and c-axis oriented. The full width at half maximum (FWHM) values of ${\omega}$-scan X-ray rocking curve (XRC) for GaN/AlN grown on PSS were 196 and 208 arcsec for symmetric (0 0 2) and asymmetric (1 0 2), respectively. FWHM of GaN on AlN/PSS was improved more than 50% because of lateral overgrowth and AlN buffer effect.


GaN;PSS;HVPE;Refractive index


  1. M. Balaji, A. Claudel, V. Fellmann, I. Gelard, E. Blanquet, R. Boichot, A. Pierret B. Attal-Tretout, A. Crisci, S. Coindeau, H. Roussel, D. Pique, K. Baskar, and M. Pons, J. Alloy. Compd., 526, 103 (2012). [DOI: http://dx.doi.orgorg/10.1016/j.jallcom.2012.02.111]
  2. K. Fujita, K. Okuura, H. Miyake, K. Hiramatsu, and H. Hirayama, Phys. Status. Solidi. C, 5, 1483 (2011). [DOI: http://dx.doi.orgorg/10.1002/pssc.201001130]
  3. H. Hirayama, S. Fujikawa, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, Phys. Status. Solidi. C, S5, S356 (2009). [DOI: http://dx.doi.orgorg/10.1002/pssc.200880958]
  4. T. Nagashima, M. Harada, H. Yanagi, H. Fukuyama, Y. Kumagai, A. Koukitu, and K. Takada, J. Cryst. Growth, 305, 355 (2007). [DOI: http://dx.doi.orgorg/10.1016/j.jcrysgro.2007.04.001]
  5. Y. Kumagai, Y. Enatsu, M. Ishizuki, Y. Kubota, J. Tajima, T. Nagashima, H. Murakami, K. Takada, and A. Koukitu, J. Cryst. Growth, 312, 2530 (2010). [DOI: http://dx.doi.orgorg/10.1016/j.jcrysgro.2010.04.008]
  6. K. Fujita, K. Okuura, H. Miyake, K. Hiramatsu, and H. Hirayama, Phys. Status. Solidi. C, 8, 1483 (2011). [DOI: http://dx.doi.orgorg/10.1002/pssc.201001130]
  7. V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, Phys. Rev. B, 58, 12899 (1998). [DOI: http://dx.doi.orgorg/10.1103/PhysRevB.58.12899]
  8. W. H. Yan, L. Z. Ting, H. J. Lei, Z. L. Yi, and L. G. Qiang, Chin. Phys. B, 24, 067103 (2015). [DOI: http://dx.doi.orgorg/10.1088/1674-1056/24/6/067103]
  9. H. Y. Shin, Y. I. Chang, S. K. Kwon, K. T. Lee, M. J Cho, and K. H. Park, J. Korean Phys. Soc., 50, 1147 (2007). [DOI: http://dx.doi.orgorg/10.3938/jkps.50.1147]
  10. K. H. Chang, M. S. Kwon, and S. I. Cho, J. Institute of Industrial Technology, 12, 123 (2004).
  11. G. El-Zammar, W. Khalfaoui, T. Oheix, A. Yvon, E. Collard, F. Cayrel, and D. Alquier, Appl. Surf. Sci., 355, 1044 (2015). [DOI: http://dx.doi.orgorg/10.1016/j.apsusc.2015.07.201]
  12. S. R. Xu, P. X. Li, J. C. Zhang, T. Jiang, J. J. Ma, Z. Y. Lin, and Y. Hao, J. Alloy. Comp., 614, 360 (2014). [DOI: http://dx.doi.orgorg/10.1016/j.jallcom.2014.06.113]
  13. M. Alevil, C. Ozgit, I. Donmez, and N. Biyikli, J. Vac. Sci. Technol A, 30, 021506 (2012). [DOI: http://dx.doi.orgorg/10.1116/1.3687937]
  14. C. Nootz, A. Schulte, and L. Chernyak, Appl. Phys. Lett., 80, 1355 (2002). [DOI: http://dx.doi.orgorg/10.1063/1.1449523]
  15. D. G. Zhao, S. J. Xu, M. H. Xie, and S. Y. Tong, Appl. Phys. Lett., 83, 28 (2003).


Supported by : 한국연구재단