DOI QR코드

DOI QR Code

Enhancing Solar Cell Properties of Heterojunction Solar Cell in Amorphous Silicon Carbide

수광층의 카바이드 함량 변화에 따른 실리콘 이종접합 태양전지 특성 변화

Kim, Hyunsung;Kim, Sangho;Lee, Youngseok;Jeong, Jun-Hui;Kim, Yongjun;Dao, Vinh Ai;Yi, Junsin
김현성;김상호;이영석;정준희;김용준;다오빈 아이;이준신

  • Received : 2016.04.11
  • Accepted : 2016.05.24
  • Published : 2016.06.01

Abstract

In this paper, the efficiency improvement of the heterojunction with intrinsic thin layer (HIT) solar cells is obtained by optimization process of p-type a-SiC:H as emitter. The optoelectronic of p-type a-SiC:H layers including the optical band-gap and conductivity under the methane gas content variation is conducted in detail. A significant increase in the Jsc by $1mA/cm^2$ and Voc by 30 mV are attributed to enhanced photon-absorption due to broader band-gap of p-a-SiC:H and reduced band-offsets at p-side interface, respectively of HIT solar cells.

Keywords

Heterojunction solar cell;Wide bandgap;Carbide;Conductivity;Absorption

References

  1. M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, IEEE J. Photovolt., 4, 96 (2014). [DOI: http://dx.doi.org/10.1109/JPHOTOV.2013.2282737] https://doi.org/10.1109/JPHOTOV.2013.2282737
  2. Z. C. Holman, A. Descoeudres, L. Barraud, F. Z. Fernandez, J. P. Seif, S. D. Wolf, and C. Ballif, IEEE J. Photovolt., 2, 7 (2012). [DOI: http://dx.doi.org/10.1109/JPHOTOV.2011.2174967] https://doi.org/10.1109/JPHOTOV.2011.2174967
  3. D. Zhang, D. Deligiannis, G. Papakonstantinou, R.A.C. M.M.V. Swaaij, and M. Zeman, IEEE J. Photovolt, 4, 1326 (2014). [DOI: http://dx.doi.org/10.1109/JPHOTOV.2014.2344768] https://doi.org/10.1109/JPHOTOV.2014.2344768
  4. H. Fujiwara, T. Kaneko, and M. Kondo, Appl. Phys. Lett., 91, 133508 (2007). [DOI: http://dx.doi.org/10.1063/1.2790815] https://doi.org/10.1063/1.2790815
  5. M.W.M. van Cleef, J. K. Rath, F. A. Rubinelli, C. H. M. van der Werf, R. E. I. Schropp, and W. F. van der Weg, J. Appl. Phys., 82, 6089 (1997). [DOI: http://dx.doi.org/10.1063/1.366479] https://doi.org/10.1063/1.366479
  6. K. Ding, U. Aeberhard, F. Finger, and U. Rau, J. Appl. Phys, 113, 134501 (2013). [DOI: http://dx.doi.org/10.1063/1.4798603] https://doi.org/10.1063/1.4798603
  7. Y. Hattori, D. Kruangam, T. Toyama, H. Okamoto, and Y. Hamakawa, Appl. Surf. Sci., 33, 1276 (1988). [DOI: http://dx.doi.org/10.1016/0169-4332(88)90445-X]
  8. Y. Tawada, M. Kondo, H. Okamoto, and Y. Hamakawa, Sol. Energy Mater., 6, 299 (1982). [DOI: http://dx.doi.org/10.1016/0165-1633(82)90036-3] https://doi.org/10.1016/0165-1633(82)90036-3
  9. H. Tarui, T. Matsuyama, S. Okamoto, H. Dohjoh, Y. Hishikawa, N. Nakamura, S. Tsuda, S. Nakano, M. Ohnishi, and Y. Kuwano, J. Appl. Phys., 12, 2436 (1989). [DOI: http://dx.doi.org/10.1143/JJAP.28.2436]
  10. I.F.S. Ionentechnik and F. Julich, J. Non-Cryst. Solids, 266, 845 (2000).
  11. C. L. Zhong, L. E. Luo, H. S. Tan, and K. W. Geng, Sol. Energy, 108, 570 (2014). [DOI: http://dx.doi.org/10.1016/j.solener.2014.08.010] https://doi.org/10.1016/j.solener.2014.08.010

Acknowledgement

Supported by : 한국에너지기술평가원(KETEP)