Design of a Low-Order Sensorless Controller by Robust H∞ Control for Boost Converters

Li, Xutao;Chen, Minjie;Shinohara, Hirofumi;Yoshihara, Tsutomu

  • 투고 : 2015.03.10
  • 심사 : 2015.11.28
  • 발행 : 2016.05.20


Luenberger observer (LO)-based sensorless multi-loop control of a converter requires an iterative trial-and-error design process, considering that many parameters should be determined, and loop gains are indirectly related to the closed-loop characteristics. Robust H∞ control adopts a compact sensorless controller. The algebraic Riccati equation (ARE)-based and linear matrix inequality (LMI)-based H∞ approaches need an exhaustive procedure, particularly for a low-order controller. Therefore, in this study, a novel robust H∞ synthesis approach is proposed to design a low-order sensorless controller for boost converters, which need not solve any ARE or LMI, and to parameterize the controller by an adjustable parameter behaving like a "knob" on the closed-loop characteristics. Simulation results show the straightforward closed-loop characteristics evaluation and better dynamic performance by the proposed H∞ approach, compared with the LO-based sensorless multi-loop control. Practical experiments on a digital processor confirmed the simulation results.


Boost converter;Closed-loop characteristics;Low order;Robust H∞ control;Sensorless


  1. R. Ahmadi, D. Paschedag, and M. Ferdowsi, "Closed-loop input and output impedances of DC-DC switching converters operating in voltage and current mode control," in 36th Annual Conference on IEEE Industrial Electronics Society(IECON), pp. 2311-2316, 2010.
  2. H. Choi, "Practical feedback loop design considerations for switched mode power supplies," Fairchild Semiconductor Power Seminar, pp. 489-498, 2010-2011.
  3. H. P. Forghani-zadeh and G. A. Rincon-Mora, "Current-sensing techniques for DC-DC converters," in 45th Midwest Symposium on Circuits and Systems, Vol. 2, pp. 577-580, Aug. 2002.
  4. P. Midya, T. K. Philip, and F. G. Matthew, "Sensorless current mode control—an observer-based technique for DC-DC converters," in 28th Annual IEEE Power Electronics Specialists Conference(PESC), Vol. 1, pp. 197-202, Jun. 1997.
  5. G. Cimini, G. Ippoliti, G. Orlando, and M. Pirro, "Current sensorless solution for PFC boost converter operating both in DCM and CCM," in 21st Mediterranean Conference on Control & Automation(MED), pp. 137-142, 2013.
  6. A. G. Beccuti, S. Mariethoz, S. Cliquennois, S. Wang, and M. Morari, “Explicit model predictive control of DC–DC switched-mode power supplies with extended kalman filtering,” IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 1864-18740, Jun. 2009.
  7. D. G. Luenberger, “An introduction to observers,” IEEE Trans. Autom. Control, Vol. 16, No. 6, pp. 596-602, Dec. 1971.
  8. A. F. Rozman and J. J. Boylan, "Band pass current control," in Applied Power Electronic Conference and Expression, Vol. 2, pp. 631-637, Feb. 1994.
  9. R. B. Ridley, B. H. Cho, and F. C. Y. LEE, “An analysis and interpretation of loop gains of multi-loop controlled switching regulators,” IEEE Trans. Power Electron, Vol. 3, No. 4, pp. 489-498, Oct. 1988.
  10. H. Cho, S. J. Yoo, and S. Kwak, “State observer based sensor less control using Lyapunov's method for boost converters,” IET Power Electron., Vol. 8, No. 1, pp. 11-19, Jan. 2015.
  11. R. Naim, G. Weiss, and S. Ben-Yaakov, “H∞ control applied to boost power converters,” IEEE Trans. Power Electron., Vol. 12, No. 4, pp. 677-683, Jul. 1997.
  12. E. Vidal-Idiarte, L. Martinez-Salamero, H. Valderrama- Blavi, F. Guinjoan, and J. Maixe, “Analysis and design of H∞ control of nonminimum phase-switching converters,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., Vol. 50, No. 10, pp. 1316- 1323, Oct. 2003.
  13. C. Olalla, R. Leyva, A. E. Aroudi, P. Garces, and I. Queinnec, “LMI robust control design for boost PWM converters,” IET Power Electron., Vol. 3, No.1, pp. 75-85, Jan. 2010.
  14. A. Moran and M. Hayase, "Design of reduced order H∞ controllers," in Proc. the 36th International Session Papers(SICE) Annual Conference, pp. 1013-1018, 1997.
  15. C. F. Yung, “Reduced-order H∞ controller design: an algebraic riccati euqation approach,” Automatica, Vol. 36, No. 6, pp. 923-926, Jun. 2000.
  16. J. Yu and A. Sideris, "H∞ control synthesis via reduced order LMIs," in 36th Conference on Decision & Control, Vol. 1, pp. 183- 188, Dec. 1997.
  17. P. Gahinet, “Explicit controller formulas for LMI-based H∞ synthesis,” Automatica, Vol. 32, No. 7, pp. 1007-1014, Jul. 1994.
  18. M. C. Berg, “Introduction to a special coordinate basis for multivariable linear systems,” IEE Proceedings – Control Theory and Applications, Vol. 145, No. 2, pp. 204-210, Mar. 1998.
  19. A. Saberi, B. M. Chen, and Z. L. Lin, “Closed-form solutions to a class of H∞-optimization problems,” International Journal of Control, Vol. 60, No. 1, pp. 41-70, 1994.
  20. A. A. Stoorvogel, A. Saberi, and B. M. Chen, “A reduced order observer based controller design for H∞-optimization,” IEEE Trans. Autom. Control, Vol. 39, No. 2, pp. 355-360, Feb. 1994.
  21. B. M. Chen, Robust and H∞ control, Springer, 2010.
  22. B. M. Chen, A. Saberi, and U. L. LY, “A non-iterative method for computing the infimum in H∞-optimization,” International Journal of Control, Vol. 56, No. 6, pp. 1399-1418, Feb. 1992.
  23. C. Scherer, “H∞-control by state-feedback and fast algorithms for the computation of optimal H∞-norms,” IEEE Trans. Autom. Contr., Vol. 35, No. 10, pp. 1090-1099, Oct. 1990.
  24. K. K. Marian, Pulse-width modulated DC–DC power converters, John Wiley & Sons, New Jersey, 2008.