An Active Output Filter with a Novel Control Strategy for Passive Output Filter Reduction

  • Choi, Kyusik ;
  • Cho, Bo-Hyung
  • Received : 2015.10.19
  • Accepted : 2015.12.07
  • Published : 2016.05.20


This paper presents a novel control strategy for passive output filter reduction using an active output filter. The proposed method achieves the dual-function of regulating the output voltage ripple and output voltage variation during load transients. The novel control strategy allows traditional simple voltage controllers to be used, without requiring the expensive current sensors and complex controllers used in conventional approaches. The proposed method is verified with results from a 125-W forward converter.


Passive output filter reduction;Voltage ripple;Load transient;Efficiency


  1. Intel Corp., "Power supply - Design guide for desktop platform form factors," Rev. 1.31, Apr. 2013.
  2. Intel Corp., "Voltage regulator module (VRM) and enterprise voltage regulator-down (EVRD) 11.1," Sep. 2009.
  3. Ecos Consulting -80Plus-, Aug. 26th 2015.
  4. D. C. Hamill and P. T. Krein, "A `zero' ripple technique applicable to any DC converter," in Proc. PESC, pp. 1165-1171, Vol. 2, 1999.
  5. J. Stahl, R. Junghaenel, M. Schmidt, and M. Albach, "Smoothing transformer as effective differential mode filter," in Proc. APEMC, pp. 277-280, 2012.
  6. M. J. Schutten, R. L. Steigerwald, and J. A. Sabaté, "Ripple current cancellation circuit," in Proc. APEC, pp. 464-470, Vol. 1, 2003.
  7. A. K. Guru, J. C. Balda, K. Carr, and Y. Q. Xiang, "Design of a switching-ripple filter for a shunt-connected active power filter," in Proc. Industry Applications Conference, pp. 1364-1368, Vol. 2, 1998.
  8. M. Zhu, D. J. Perreault, V. Caliskan, T. C. Neugebauer, S. Guttowski, and J. G. Kassakian, “Design and evaluation of feedforward active ripple filters,” IEEE Trans. Power Electron., Vol. 20, No. 2, pp. 276-284, Mar. 2005.
  9. M. S. Moon and B. H. Cho, “Novel active ripple filter for the solar array shunt switching unit,” Journal of Propulsion and Power, Vol. 12, No. 1, pp. 78- 82, Jul./Fab. 1995.
  10. N. K. Poon, J. C. P. Liu, C. K. Tse, and M. H. Pong, “Techniques for input ripple current cancellation: classification and implementation,” IEEE Trans. Power Electron., Vol. 15, No. 6, pp. 1144-1152, Nov. 2000.
  11. J. Pforr, "Switch-mode current amplifier with high output current quality employing an active output filter," in Proc. Power Electronics and Intelligent Motion Conference, pp. 22-24, 1999.
  12. H. Ertl, J. W. Kolar, G. Morauf, and F. C. Zach, "Analysis of active ripple current compensators employing multi-cell switch-mode amplifier topologies," in Proc. PCIM, pp. 1-7, 2002.
  13. Z. Chen, M. Chen, Y. Luo, C. Wang, "Low frequency ripple current compensation with DC active filter for the single-phase aeronautic static inverter," in Proc. ECCE, pp. 1468-1475, Sep. 2011.
  14. D. Goder and W. R. Pelletier, "V2 architecture provides ultra-fast transient response in switch mode power supplies," in Proc. High Frequency Power Conversion Conference, pp. 19-23, 1996.
  15. W. Huang, "A new control for multi-phase buck converter with fast transient response," in Proc. APEC, pp. 273-279, Vol. 1, 2001.
  16. S. Qu, "Modeling and design considerations of V2 controlled buck regulator," in Proc. APEC, pp. 507-513, Vol. 1, 2001.
  17. S. C. Tan, Y. M. Lai, C. K. Tse, and M. K. H. Cheung, "An adaptive sliding mode controller for buck converter in continuous conduction mode," in Proc. APEC, pp. 1395-1400, Vol. 3, 2004.
  18. D. Bieal, E. Fossas, F. Guinjoan, E. Alarcon, and A. Poveda “Application of sliding-mode control to the design of a buck-based sinusoidal generator,” IEEE Trans. Ind. Electron., Vol. 48, No. 3, pp. 563-571, Jun. 2002.
  19. S. Li, X. Zou, and X. Chen, "A nonlinear control buck converter with fast transient response," in Proc. ISIC pp. 45-48, 2009.
  20. A. Barrado, R. Vazquez, A. Lazaro, J. Pleite, J. Vazquez, and E. Olias, "Stability analysis of linear-non linear control (LnLc) applied to fast transient response DC-DC converter," in Proc. PESC pp. 1175-1180, Vol. 3, 2003.
  21. A. Babazadeh and D. Maksimovic, “Hybrid digital adaptive control for fast transient response in synchronous buck DC–DC converters,” IEEE Trans. Power Electron., Vol. 24, No. 11, pp. 2625-2638, Nov. 2009.
  22. N. K. Poon, J. C. P. Liu, and M. H. Pong, "A low cost DC-DC stepping inductance voltage regulator with fast transient loading response," in Proc. APEC, pp. 268-272, Vol.1, 2001.
  23. D. D. C. Lu, J. C. P. Liu, F. N. K. Poon, and B. M. H. Pong, “A single phase voltage regulator module (VRM) with stepping inductance for fast transient response,” IEEE Trans. Power Electron., Vol. 22, No. 2, pp. 417-424, Mar. 2007.
  24. Z. Shan, S. C. Tan, and C. K. Tse, “Transient mitigation of DC–DC converters for high output current slew rate applications,” IEEE Trans. Power Electron., Vol. 28, No. 5, pp. 2377-2388, May. 2013.
  25. Z. Shan, C. K. Tse, and S. C. Tan, “Classification of auxiliary circuit schemes for feeding fast load transients in switching power supplies,” IEEE Trans. Power Electron., Vol. 61, No. 3, pp. 930-942, Mar. 2014.
  26. Y. L. Lin and K. H. Liu, "A new synchronous-switch post regulator for multi-output forward converters," in Proc. APEC, pp. 693-696, 1990.
  27. B. C. Hyun and B. H. Cho, "The study of the asymmetrical half-bridge converter with magnetic coupled post regulator," in Proc. KIPE, pp. 121-123, Nov. 2007.
  28. X. Wang, F. Tian, and I. Batarseh, “High efficiency parallel post regulator for wide range input DC–DC converter,” IEEE Trans. Power Electron., Vol. 23, No. 2, pp. 852-858, Mar. 2008.
  29. K. Yao, Y. Ren, and F. C. Lee, “Critical bandwidth for the load transient response of voltage regulator modules,” IEEE Trans. Power Electron., Vol. 19, No. 6, pp. 1454-1461, Nov. 2004.
  30. C. W. T. McLyman, Transformer and Inductor Design Handbook, 3rd ed., CRC Press, pp. 8-20, 8-21, 2004.


Grant : BK21플러스

Supported by : 서울대학교