Photocatalytic degradation and antibacterial investigation of nano synthesized Ag3VO4 particles @PAN nanofibers

DOI QR코드

DOI QR Code

Saud, Prem Singh;Ghouri, Zafar Khan;Pant, Bishweshwar;An, Taehee;Lee, Joong Hee;Park, Mira;Kim, Hak-Yong

  • 투고 : 2015.10.06
  • 심사 : 2016.02.24
  • 발행 : 2016.04.30

초록

Well-dispersed Ag3VO4 nanoparticles @polyacrylonitrile (PAN) nanofibers were synthesized by an easily controlled, template-free method as a photo-catalyst for the degradation of methylene blue. Their structural, optical, and photocatalytic properties have been studied by X-ray diffraction, transmission electron microscopy, field-emission scanning electron microscopy equipped with rapid energy dispersive analysis of X-ray, photoluminescence, and ultraviolet-visible spectroscopy. The characterization procedures revealed that the obtained material is PAN nanofibers decorated by Ag3VO4 nanoparticles. Photocatalytic degradation of methylene blue investigated in an aqueous solution under irradiation showed 99% degradation of the dye within 75 min. Finally, the antibacterial performance of Ag3VO4 nanoparticles @PAN composite nanofibers was experimentally verified by the destruction of Escherichia coli. These results suggest that the developed inexpensive and functional nanomaterials can serve as a non-precious catalyst for environmental applications.

키워드

photo-catalyst;antibacterial;ion exchange reaction;nanoparticles;PAN/Ag3VO4 composite nanofibers

참고문헌

  1. Ghouri ZK, Akhtar MS, Zahoor A, Barakat NAM, Han W, Park M, Pant B, Saud PS, Lee CH, Kim HY. High-efficiency super capacitors based on hetero-structured α-MnO2 nanorods. J Alloys Compd, 642, 210 (2015). http://dx.doi.org/10.1016/j.jallcom.2015.04.082. https://doi.org/10.1016/j.jallcom.2015.04.082
  2. Hernando M, Vetturi SD, Bueno MM, Fernandez-Alba A, Toxicity evaluation with vibrio test of organic chemicals used in aquaculture. Chemosphere, 68, 724 (2007). https://doi.org/10.1016/j.chemosphere.2006.12.097
  3. Ghouri ZK, Barakat NAM, Obaid M, Lee JH, Kim HY. Co/CeO2- decorated carbon nanofibers as effective non-precious electro-catalyst for fuel cells application in alkaline medium. Ceram Int, 41, 2271 (2015). http://dx.doi.org/10.1016/j.ceramint.2014.10.031. https://doi.org/10.1016/j.ceramint.2014.10.031
  4. Ghouri ZK, Barakat NAM, Alam AM, Park M, Han TH, Kim HY. Facile synthesis of Fe/CeO2-doped CNFs and their capacitance behavior. Int J Electrochem Sci, 10, 2064 (2015).
  5. Ghouri ZK, Barakat NAM, Kim HY. Influence of copper content on the electrocatalytic activity toward methanol oxidation of CoxCuy alloy nanoparticles-decorated CNFs. Sci Rep, 5, 16695 (2015). http://dx.doi.org/10.1038/srep16695. https://doi.org/10.1038/srep16695
  6. Saud PS, Pant B, Tiwari AP, Ghouri ZK, Park M, Kim HY. Effective photocatalytic efficacy of hydrothermally synthesized silver phosphate decorated titanium dioxide nanocomposite fibers; J. colloid interface sci. 456(2016)225.
  7. Ghouri ZK, Barakat NAM, Alam AM, Alsoufi MS, Bawazeer TM, Mohamed AF, Kim HY. Synthesis and characterization of Nitrogen-doped & CaCO3-decorated reduced graphene oxide nanocomposite for electrochemical supercapacitors. Electrochim Acta, 184, 193 (2015). http://dx.doi.org/10.1016/j.electacta.2015.10.069. https://doi.org/10.1016/j.electacta.2015.10.069
  8. Ghouri ZK, Zahoor A, Barakat NAM, Alsoufi MS, Bawazeer TM, Mohamed AF, Kim HY. The (2 × 2) tunnels structured manganese dioxide nanorods with α phase for lithium air batteries. Superlattices Microstruct, 90, 184 (2016). http://dx.doi.org/10.1016/j.spmi.2015.12.012. https://doi.org/10.1016/j.spmi.2015.12.012
  9. Ghouri ZK, Barakat NAM, Saud PS, Park M, Kim BS, Kim HY. Supercapacitors based on ternary nanocomposite of TiO2&Pt@ graphenes. J Mater Sci: Mater Electron, 27, 3894 (2016). http://dx.doi.org/10.1007/s10854-015-4239-x. https://doi.org/10.1007/s10854-015-4239-x
  10. Hernando MD, De Vettori S, Martínez Bueno MJ, Fernández-Alba AR. Toxicity evaluation with Vibrio fischeri test of organic chemicals used in aquaculture. Chemosphere, 68, 724 (2007). http://dx.doi.org/10.1016/j.chemosphere.2006.12.097. https://doi.org/10.1016/j.chemosphere.2006.12.097
  11. Hamzeh Y, Ashori A, Azadeh E, Abdulkhani A. Removal of acid orange 7 and remazol black 5 reactive dyes from aqueous solutions using a novel biosorbent. Mater Sci Eng C, 32, 1394 (2012). http://dx.doi.org/10.1016/j.msec.2012.04.015. https://doi.org/10.1016/j.msec.2012.04.015
  12. Mahmoodi NM, Najafi F, Khorramfar S, Amini F, Arami M. Synthesis, characterization and dye removal ability of high capacity polymeric adsorbent: polyaminoimide homopolymer. J Hazard Mater, 198, 87 (2011). http://dx.doi.org/10.1016/j.jhazmat.2011.10.018. https://doi.org/10.1016/j.jhazmat.2011.10.018
  13. Poulios I, Micropoulou E, Panou R, Kostopoulou E. Photooxidation of eosin Y in the presence of semiconducting oxides. Appl Catal B, 41, 345 (2003). http://dx.doi.org/10.1016/s0926-3373(02)00160-1. https://doi.org/10.1016/S0926-3373(02)00160-1
  14. Wetchakun N, Chaiwichain S, Inceesungvorn B, Pingmuang K, Phanichphant S, Minett AI, Chen J. BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity. ACS Appl Mater Interfaces, 4, 3718 (2012). http://dx.doi.org/10.1021/am300812n. https://doi.org/10.1021/am300812n
  15. Pant B, Barakat NAM, Pant HR, Park M, Saud PS, Kim JW, Kim HY. Synthesis and photocatalytic activities of CdS/TiO2 nanoparticles supported on carbon nanofibers for high efficient adsorption and simultaneous decomposition of organic dyes. J Colloid Interface Sci, 434, 159 (2014). http://dx.doi.org/10.1016/j.jcis.2014.07.039. https://doi.org/10.1016/j.jcis.2014.07.039
  16. Tian Y, Chang B, Yang Z, Zhou B, Xi F, Dong X. Graphitic carbon nitride-BiVO4 heterojunctions: simple hydrothermal synthesis and high photocatalytic performances. RSC Adv, 4, 4187 (2014). http://dx.doi.org/10.1039/c3ra46079g. https://doi.org/10.1039/C3RA46079G
  17. Sher Shah MSA, Park AR, Zhang K, Park JH, Yoo PJ. Green synthesis of biphasic TiO2-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS Appl Mater Interfaces, 4, 3893, (2012). http://dx.doi.org/10.1021/am301287m. https://doi.org/10.1021/am301287m
  18. Zhou K, Zhu Y, Yang X, Jiang X, Li C. Preparation of graphene-TiO2 composites with enhanced photocatalytic activity. New J Chem, 35, 353 (2011). http://dx.doi.org/10.1039/c0nj00623h. https://doi.org/10.1039/C0NJ00623H
  19. Pant B, Pant HR, Barakat NAM, Park M, Jeon K, Choi Y, Kim HY. Carbon nanofibers decorated with binary semiconductor (TiO2/ZnO) nanocomposites for the effective removal of organic pollutants and the enhancement of antibacterial activities. Ceram Int, 39, 7029 (2013). http://dx.doi.org/10.1016/j.ceramint.2013.02.041. https://doi.org/10.1016/j.ceramint.2013.02.041
  20. Pant HR, Pant B, Pokharel P, Kim HJ, Tijing LD, Park CH, Lee DS, Kim HY, Kim CS. Photocatalytic TiO2-RGO/nylon-6 spiderwave-like nano-nets via electrospinning and hydrothermal treatment. J Memb Sci, 429, 225 (2013). http://dx.doi.org/10.1016/j.memsci.2012.11.025. https://doi.org/10.1016/j.memsci.2012.11.025
  21. Song L, Zhang S, Chen B. A novel visible-light-sensitive strontium carbonate photocatalyst with high photocatalytic activity. Catal Commun, 10, 1565 (2009). http://dx.doi.org/10.1016/j.catcom.2009.03.022. https://doi.org/10.1016/j.catcom.2009.03.022
  22. Sridharan K, Jang E, Park TJ. Novel visible light active graphitic C3N4-TiO2 composite photocatalyst: Synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants. Appl Catal B, 142-143, 718 (2013). http://dx.doi.org/10.1016/j.apcatb.2013.05.077. https://doi.org/10.1016/j.apcatb.2013.05.077
  23. Dong H, Chen G, Sun J, Li C, Yu Y, Chen D. A novel high-efficiency visible-light sensitive Ag2CO3 photocatalyst with universal photodegradation performances: simple synthesis, reaction mechanism and first-principles study. Appl Catal B, 134-135, 46 (2013). http://dx.doi.org/10.1016/j.apcatb.2012.12.041. https://doi.org/10.1016/j.apcatb.2012.12.041
  24. Kako T, Kikugawa N, Ye J. Photocatalytic activities of AgSbO3 under visible light irradiation. Catal Today, 131, 197 (2008). http://dx.doi.org/10.1016/j.cattod.2007.10.094. https://doi.org/10.1016/j.cattod.2007.10.094
  25. Yu C, Wei L, Chen J, Xie Y, Zhou W, Fan Q. Enhancing the Photocatalytic Performance of Commercial TiO2 Crystals by Coupling with Trace Narrow-Band-Gap Ag2CO3. Ind Eng Chem Res, 53, 5759 (2014). http://dx.doi.org/10.1021/ie404283d. https://doi.org/10.1021/ie404283d
  26. Rawal SB, Sung SD, Lee WI. Novel Ag3PO4/TiO2 composites for efficient decomposition of gaseous 2-propanol under visiblelight irradiation. Catal Commun, 17, 131 (2012). http://dx.doi.org/10.1016/j.catcom.2011.10.034. https://doi.org/10.1016/j.catcom.2011.10.034
  27. Huang CM, Pan GT, Li YCM, Li MH, Yang TCK. Crystalline phases and photocatalytic activities of hydrothermal synthesis Ag3VO4 and Ag4V2O7 under visible light irradiation. Appl Catal A Gen, 358, 164 (2009). http://dx.doi.org/10.1016/j.apcata.2009.02.007. https://doi.org/10.1016/j.apcata.2009.02.007
  28. Konta R, Kato H, Kobayashi H, Kudo A. Photophysical properties and photocatalytic activities under visible light irradiation of silver vanadates. Phys Chem Chem Phys, 5, 3061 (2003). http://dx.doi.org/10.1039/b300179b. https://doi.org/10.1039/b300179b
  29. Hu X, Hu C. Preparation and visible-light photocatalytic activity of Ag3VO4 powders. J Solid State Chem, 180, 725 (2007). http://dx.doi.org/10.1016/j.jssc.2006.11.032. https://doi.org/10.1016/j.jssc.2006.11.032
  30. Xu H, Li H, Xu L, Wu C, Sun G, Xu Y, Chu J. Enhanced photocatalytic activity of Ag3VO4 loaded with rare-earth elements under visible-light irradiation. Ind Eng Chem Res, 48, 10771 (2009). http://dx.doi.org/10.1021/ie900835g. https://doi.org/10.1021/ie900835g
  31. Wang S, Guan Y, Wang L, Zhao W, He H, Xiao J, Yang S, Sun C. Fabrication of a novel bifunctional material of BiOI/Ag3VO4 with high adsorption-photocatalysis for efficient treatment of dye wastewater. Appl Catal B, 168-169, 448 (2015). http://dx.doi.org/10.1016/j.apcatb.2014.12.047. https://doi.org/10.1016/j.apcatb.2014.12.047
  32. Shifu C, Wei Z, Wei L, Huaye Z, Xiaoling Y, Yinghao C. Preparation, characterization and activity evaluation of p-n junction photocatalyst p-CaFe2O4/n-Ag3VO4 under visible light irradiation. J Hazard Mater, 172, 1415 (2009). http://dx.doi.org/10.1016/j.jhazmat.2009.08.007. https://doi.org/10.1016/j.jhazmat.2009.08.007
  33. Zhang L, He Y, Ye P, Qin W, Wu Y, Wu T. Enhanced photodegradation activity of Rhodamine B by Co3O4/Ag3VO4 under visible light irriadiation. Mater Sci Eng B, 178, 45 (2013). http://dx.doi.org/10.1016/j.mseb.2012.10.011. https://doi.org/10.1016/j.mseb.2012.10.011
  34. Tao X, Hong Q, Xu T, Liao F. Highly efficient photocatalytic performance of graphene-Ag3VO4 composites. J Mater Sci: Mater Electron, 25, 3480 (2014). http://dx.doi.org/10.1007/s10854-014-2042-8. https://doi.org/10.1007/s10854-014-2042-8
  35. Zhu T, Song Y, Ji H, Xu Y, Song Y, Xia J, Yin S, Li Y, Xu H, Zhang Q, Li H. Synthesis of g-C3N4/Ag3VO4 composites with enhanced photocatalytic activity under visible light irradiation. Chem Eng J, 271, 96 (2015). http://dx.doi.org/10.1016/j.cej.2015.02.018. https://doi.org/10.1016/j.cej.2015.02.018
  36. Mahapatra A, Garg N, Nayak BP, Mishra BG, Hota G. Studies on the synthesis of electrospun PAN-Ag composite nanofibers for antibacterial application. J Appl Polym Sci, 124, 1178 (2012). http://dx.doi.org/10.1002/app.35076. https://doi.org/10.1002/app.35076
  37. Yu H, Dong Q, Jiao Z, Wang T, Ma J, Lu G, Bi Y. Ion exchange synthesis of PAN/Ag3PO4 core-shell nanofibers with enhanced photocatalytic properties. J Mater Chem A, 2, 1668 (2014). http://dx.doi.org/10.1039/c3ta14447j. https://doi.org/10.1039/C3TA14447J
  38. Saud PS, Pant B, Park M, Chae SH, Park SJ, Newehy ME, Al-Deyab SS, Kim HY. Preparation and photocatalytic activity of fly ash incorporated TiO2 nanofibers for effective removal of organic pollutants. Ceram Int, 41, 1771 (2015). http://dx.doi.org/10.1016/j.ceramint.2014.09.123. https://doi.org/10.1016/j.ceramint.2014.09.123
  39. Vu Ta, Dao CD, Hoang TTT, Dang PT, Tran HTK, Nguyen KT, Le GH, Nguyen TV, Lee GD. Synthesis of novel silver vanadates with high photocatalytic and antibacterial activities. Mater Lett, 123, 176 (2014). http://dx.doi.org/10.1016/j.matlet.2014.03.004. https://doi.org/10.1016/j.matlet.2014.03.004

피인용 문헌

  1. 1. Graphene–Carbon–Metal Composite Film for a Flexible Heat Sink vol.9, pp.46, 2017, doi:10.5714/CL.2016.18.030