A Recombinant Microbial Biosensor for Cadmium and Lead Detection

카드뮴 및 납 검출을 위한 재조합 미생물 바이오센서

  • Received : 2016.01.04
  • Accepted : 2016.05.16
  • Published : 2016.05.30


Biosensors have been used as first-step monitoring tools to detect on-site samples in a simple and cost-effective manner. Numerous recombinant microbial biosensors have been exploited for monitoring on-site toxic chemicals and biological signals. Herein, a recombinant microbial biosensor was constructed for monitoring cadmium. The cadmium responding cadC regulatory gene and it’s promoter from Staphylococcus aureus was amplified through PCR, fused with the lacZ gene, and transformed into Escherichia coli BL21 (DE3) cells. In the presence of cadmium, the biosensor cells express β-galactosidase showing red color development with chlorophenol red β-galactopyranoside (CPRG) as the enzymatic substrate. The biosensor cells showed the best β-galactosidase activity after 3 hr induction with cadmium at pH 5 and a detection range from 0.01 μM to 10 mM cadmium with a linearity from 0.01 to 0.1 μM cadmium (y = 0.98 x + 0.142, R2 = 0.98). Among the heavy metals, cadmium and lead showed good responses, tin and cobalt showed medium responses, and mercury and copper showed no responses. The biosensor cells showed good responses to several waste waters similar to buffer solution, all spiked with cadmium. The biosensor described herein could be applied for on-site cadmium monitoring in a simple and cost-effective manner without sample pretreatments.


Cadmium;heavy metals;recombinant microbial biosensor


  1. Belkin, S. 2003. Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. 6, 206-212.
  2. Beveridge, T. J., Hughes, M. N., Lee, H., Leung, K. T., Poole, R. K., Savvaidis, I., Silver, S. and Trevors, J. T. 1997. Metal-microbe interaction: contemporary approaches. Adv. Microb. Physiol. 38, 177-243.
  3. D′Souza, S. F. 2001. Microbial biosensors. Biosens. Bioelectron. 16, 337-353.
  4. Eustice, D. C., Feldman, P. A., Colberg-Poley, A. M., Buckery, R. M. and Neubaue, R. H. 1991. A sensitive method for the detection of beta-galactosidase transfected mammalian cells. Biotechniques 6, 739-743.
  5. Gatti, D., Mitra, B. and Rosen, B. P. 2000. Escherichia coli soft metal ion-translocating ATPases. J. Biol. Chem. 275, 34009-34012.
  6. Harms, H., Wells, M. C. and van der Meer, J. R. 2006. Whole-cell living biosensors-are they ready for environmental application? Appl. Microbiol. Biotechnol. 70, 273-280.
  7. Kim, M. N., Park, H. H., Lim, W. K. and Shin, H. J. 2003. Viability and luciferase activity of freeze-dried recombinant biosensor cells for detecting aromatic hydrocarbons. J. Biomed. Lab. Sci. 9, 195-201.
  8. Kim, M. N., Park, H. H., Lim, W. K. and Shin, H. J. 2005. Construction and comparison of Escherichia coli whole-cell biosensors capable of detecting aromatic compounds. J. Microbiol. Methods 60, 235-245.
  9. Lei, Y., Chen, W. and Mulchandani, A. 2006. Microbial biosensors. Anal. Chim. Acta 568, 200-210.
  10. Moat, A. G. and Foster, J. W. 1995. Microbial Physiology. Wiley/Liss, New York.
  11. Park, H. H., Lee, H. Y., Lim, W. K. and Shin, H. J. 2005b. NahR: effects of replacements at Asn 169 and Arg 248 on promoter binding and inducer recognition. Arch. Biochem. Biophys. 434, 67-74.
  12. Park, H. H., Lim, W. K. and Shin, H. J. 2005a. In vitro binding of purified NahR regulatory protein with promoter Psal. Biochim. Biophys. Acta 1725, 247-255.
  13. Park, S. M., Park, H. H., Lim, W. K. and Shin, H. J. 2003. A new variant activator involved in the degradation of phenolic compounds from a strain of Pseudomonas putida. J. Biotechnol. 103, 227-236.
  14. Pena, M. M., Koch, K. A. and Thiele, D. J. 1998. Dynamic regulation of copper uptake and detoxification genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 2514-2523.
  15. Rapoport, N., Smirnov, A. I., Timoshin, A., Pratt, A. M. and Pitt, W. G. 1997. Factors affecting the permeability of Pseudomonas aeruginosa cell walls toward lipophilic compounds: Effects of ultrasound and cell age. Arch. Biochem. Biophys. 344, 114-124.
  16. Rensing, C., Sun, Y., Mitra, B. and Rosen, B. P. 1998. Pb(Ⅱ)-translocating P-type ATPase. J. Biol. Chem. 273, 32614-32617.
  17. Ron, E. Z. 2007. Biosensing environmental pollution. Curr. Opin. Biotechnol. 18, 252-256.
  18. Rosen, B. P., Bhattacharjee, H., Zhou, T. and Walmsley, A. R. 1999. Mechanism of the ArsA ATPase. Biochim. Biophys. Acta. 1461, 207-215.
  19. Sambrook, J., Fritsch, E. F. and Maniatis, T. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
  20. Shetty, R. S., Deo, S. K., Shah, P., Sun, Y., Rosen, B. P. and Daunert, S. 2003. Luminescence-based whole-cell-sensing systems for cadmium and lead using genetically engineered bacteria. Anal. Bioanal. Chem. 376, 11-17.
  21. Shin, H. J., Park, H. H. and Lim, W. K. 2005. Freeze-dried recombinant bacteria for on-site detection of phenolic compounds by color change. J. Biotechnol. 119, 36-43.
  22. Shin, H. J. 2011. Genetically engineered microbial biosensors for in situ monitoring of environmental pollution. Appl. Microbiol. Biotechnol. 89, 867-877.
  23. Shin, H. J. 2010. Development of highly-sensitive microbial biosensor by mutation of the nahR regulatory gene. J. Biotechnol. 150, 246-250.
  24. Wu, C. H., Le, D., Mulchandani, A. and Chen, W. 2009. Optimization of a whole-cell cadmium sensor with a toggle gene circuit. Biotechnol. Prog. 25, 898-903.

Cited by

  1. Technological Microbiology: Development and Applications vol.8, 2017,