DOI QR코드

DOI QR Code

The Role of Plant Fatty Acids in Regulation of the Adaptation of Organisms to the Cold Climate in Cryolithic Zone of Yakutia

야쿠티아의 동토지역에 서식하는 생물의 추운기후-순화의 조절에서 식물 지방산의 역할

Petrov, Klim Alekseevich;Dudareva, Lyubov Vissarionovna;Nokhsorov, Vasilii Vasilevich;Perk, Aleksandr Aleksandrovich;Chepalov, Valentin Azotovich;Sophronova, Valentina Egorovna;Voinikov, Victor Kirillovich;Zulfugarov, Ismayil S.;Lee, Choon-Hwan
페트로프;두다레바;노크소로프;퍼크;세파로프;소프로노바;보이니코프;쥴푸가로프;이춘환

  • Received : 2016.02.05
  • Accepted : 2016.04.29
  • Published : 2016.05.30

Abstract

Vegetative plants in Yakutia are naturally frozen when they are covered with snow in the fall, and they function as green cryo-fodder that is a source of biologically active substances and nutrients for herbivorous animals. We observed a considerable increase in the total fatty acid content in the leaves of Avena sativa, Elytrigia rеpens, Equisetum variegatum and Equisetum scirpoides during the fall period. However, the degree of unsaturation of fatty acids was not higher in the frozen plants covered with snow than in the summer plants, with the exception of E. scirpoides, a dwarf horsetail found in the Pole of Cold in the northern hemisphere. In the internal adipose tissue of the Yakut horse (young horse meat), 18 fatty acids were found, including 10 saturated ones. Monounsaturated oleic С18:1 (n-9) acid and polyunsaturated α-linolenic С18:3 (n-3) acid were equally prevalent among the unsaturated fatty acids, accounting for 70% of the total unsaturated fatty acids. This composition of polyenoic fatty acids in the internal adipose tissue indicates that the Yakut horse actively feeds on the fall vegetation and the wintergreen sedge-grass. We believe that the high plant-specific free fatty acid content in the tissue of Yakut horses may play an important role in the regulation of their resistance to long-term low-temperature stress.

Keywords

Adaptation;cryoresistance;fatty acids;grass plant;Yakut horse

References

  1. Abramov, A. F. and Petrova, L. V. 2010. Fatty acid content in the meat of the Yakut breed foals. RASHN Papers 3, 56-57.
  2. Alekseev, V. G. 1994. Plant resistance in the North conditions: ecological and biochemical aspects. Nauka: Novosibirsk.
  3. Andreev, V. N., Galaktionova, T. F., Govorov, P. M., Zakharova, V. I., Neustoyeva, A. I., Savinov, D. D. and Torgovkina, E. E. 1978. Seasonal and weather dynamics of phytomass in the subarctic tundra. Nauka: Novosibirsk.
  4. Anufriev, A. I. 2008. The mechanisms of small mammals hibernation in Yakutia. RAN: Novosibirsk.
  5. Bocharov, E. A. and Djanumov, A. A. 1978. The synthesis of polar lipids in winter wheat chloroplasts due to the plant cold-resistance. Plant Physiol. (Moscow). 25, 756-760.
  6. Bowland, J. P. and Newell, J. A. 1974. Fatty acid composition of shoulder fat and perinephric fat from pasture-feed horses. Can. J. Anim. Sci. 54, 373-376. https://doi.org/10.4141/cjas74-050
  7. Cui, M., Lin, Y., ZU, Y., Efferth, T., Li, D. and Tang, Z. 2015. Ethylene increases accumulation of compatible solutes and decreases oxidative stress to improve plant tolerance to water stress in Arabidopsis. J. Plant Biol. 58, 193-201. https://doi.org/10.1007/s12374-014-0302-z
  8. Dong, C. H. and Pei, H. 2014. Over-expression of miR397 improves plant tolerance to cold stress in Arabidopsis thaliana. J. Plant Biol. 57, 209-217. https://doi.org/10.1007/s12374-013-0490-y
  9. Egorov, A. D. 1960. The chemical composition of fodder plants of Yakutia. Academy of Sciences USSR: Moscow.
  10. Elliot, J. I. and Bowland, J. P. 1968. Effects of dietary copper sulfate on the fatty acid composition of porcine depot fats. J. Anim. Sci. 27, 956-960. https://doi.org/10.2527/jas1968.274956x
  11. Gabyshev, M. F. 1957. The Yakut horse. Yakutsk book publishers: Yakutsk.
  12. Gabyshev, M. F. and Kazansky, A. V. 1957. Fodder grasses of Yakutia. Characteristics of the chemical composition and nutrient value of the fodder grasses in the Yakut ASSR. Yakutsk book publishers: Yakutsk.
  13. Garlid, K. D., Jaburek, M. and Jazek, P. 1998. The mechanism of proton transport mediated by mitochondrial uncoupling proteins. FEBS Lett. 438, 10-14. https://doi.org/10.1016/S0014-5793(98)01246-0
  14. Harwood, J. L. 1994. Environmental factors which can alter lipid metabolism. Prog. Lipid Res. 33, 193-202. https://doi.org/10.1016/0163-7827(94)90022-1
  15. Heldmaier, G., Buchberger, P. and Seidi, K. 1983. Contribution adipose tissue to the regulatory heart production in the Hungarian hamsters. J. Therm. Biol. 41, 305-321.
  16. Hilditch, T. P. and Williams, P. N. 1964. The chemical constitution of natural fats. 4th ed., Chapman and Hall: London.
  17. Jaworski, J. G. and Stumpf, P. K. 1974. Fat metabolism in higher plants. Properties of a soluble stearyl-acyl carrier protein desaturase from maturing Carthamus tinctorius. Arch. Biochem. Biophys. 162, 158-165. https://doi.org/10.1016/0003-9861(74)90114-3
  18. Jezek, P., Engstova, H., Zackova, M., Vercesi, A. E., Costa, A. D. T., Arruda, P. and Garlid, K. D. 1998. Fatty acid cycling mechanism and mitochondrial uncoupling proteins. Biochim. Biophys. Acta. 1365, 319-327. https://doi.org/10.1016/S0005-2728(98)00084-X
  19. Kalabukhov, N. I. 1985. The mammals′ hibernation. Nauka: Moscow.
  20. Korotov, G. P. 1966. The Yakut cattle: productivity and biological peculiarities. Yakutsk book publishers: Yakutsk.
  21. Kuiper, P. J. C. 1984. Lipid metabolism of higher plants as a factor in environmental adaptation. Dev. Plant Biol. 9, 525-530.
  22. Levachev, M. M., Mishukova, E. A., Syvkova, V. G. and Skulachev, V. P. 1965. The energy exchange of the pigeon during its self-heating after hypothermia. Biochemistry (Moscow). 30, 864-871.
  23. Los, D. A. and Murata, N. 2004. Membrane fluidity and its role in the perception of environmental signals. Biochim. Biophys. Acta. 1666, 142-157. https://doi.org/10.1016/j.bbamem.2004.08.002
  24. Lyons, J. M. 1973. Chilling injury in plants. Ann. Rev. Plant Physiol. 24, 445-466. https://doi.org/10.1146/annurev.pp.24.060173.002305
  25. Lyons, J. M., Wheaton, T. A. and Pratt, H. R. 1964. Relationship between the physical nature of mitochondrial membranes and chilling sensitivity in plants. Plant Physiol. 39, 262-268. https://doi.org/10.1104/pp.39.2.262
  26. Mikami, K. and Murata, N. 2003. Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Prog. Lipid Res. 42, 527-543. https://doi.org/10.1016/S0163-7827(03)00036-5
  27. Nishida, I. and Murata, N. 1996. Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 541-568. https://doi.org/10.1146/annurev.arplant.47.1.541
  28. Palou, A., Pico, C., Bonet, M. L. and Oliver, P. 1998. The uncoupling proteins thermogenin. Int. J. Biochem. Cell Biol. 30, 7-11. https://doi.org/10.1016/S1357-2725(97)00065-4
  29. Petrov, K. A., Sofronova, V. E., Chepalov, V. A., Perk, A. A. and Maksimov, T. Kh. 2010. Seasonal changes of photosynthetic pigments content in perennial herbaceous of cryolithic zone. Plant Physiol. (Moscow). 57, 192-199.
  30. Petrov, K. A., Sofronova, V. E., Buryakina, V. V., Perk, A. A., Tatarinova, T. D., Ponomarev, A. G., Chepalov, V. A., Okhlopkova, Zh. M., Vassylieva, I. V. and Maksimov, T. Kh. 2011. Woody plants of Yakutia and low-temperature stress. Plant Physiol. (Moscow). 439, 866-874.
  31. Raison, J. K. 1973. The influence of temperature-induced phase changes on the kinetics of respiratory and other membrane-associated enzyme systems. J. Bioenerg. 4, 258-309.
  32. Ramos, P., Gieseg, S. P., Shuster, B. and Esterbauer, H. 1995. Effect of temperature and phase transition on oxidation resistance of low density lipoprotein. J. Lipid Res. 36, 2113-2128.
  33. Routaboul, J. M., Fisher, S. F. and Browse, J. 2000. Trienoic fatty acids are required to maintain chloroplast function at low temperatures. Plant Physiol. 124, 1697-1705. https://doi.org/10.1104/pp.124.4.1697
  34. Ruelland, V. and Zachowski, A. 2010. How plants sense temperature. Envir. Exp. Bot. 69, 225-232. https://doi.org/10.1016/j.envexpbot.2010.05.011
  35. Rumyantsev, V. A. 1990. A method of green fodder storage. USSR Patent No 1835996.
  36. Slobodchikova, M. N., Ivanov, R. V., Stepanov, K. M., Pustovoy, V. F., Osipov, V. G. and Mironov, S. M. 2011. Lipid fatty acid composition of the fat tissue of the Yakut horse. Horse Breed. Eques. Sport. 6, 28-30.
  37. Smolenska, G. and Kuiper, P. J. C. 1977. Effect of low temperature on lipid and fatty acid composition of roots and leaves of winter rape plants. Physiol. Plant 41, 29-35. https://doi.org/10.1111/j.1399-3054.1977.tb01517.x
  38. Solomonov, N. G. 1976. Major results and objectives of ecological and physiological research of wild mammals in Yakutia, pp. 3-24. In Ecological-physiological peculiarities of the animals of Yakutia. Nauka: Novosibirsk.
  39. Sopyn, A. I. and Trunova, T. I. 1991. Dynamics of phospholipid and fatty acid content in etiolated winter wheat seedlings during frost hardening. Plant Physiol. (Moscow). 38, 142-149.
  40. Thewke, D., Kramer, M. and Sinensky, M. S. 2003. Transcriptional homeostatic control of membrane lipid composition. Biochem. Biophys. Res. Commun. 273, 1-4.
  41. Tovuu, A., Zulfugarov, I. S. and Lee, C. H. 2013. Correlations between the temperature dependence of chlorophyll fluorescence and the fluidity of thylakoid membranes. Physiol. Plant. 147, 409-416. https://doi.org/10.1111/j.1399-3054.2012.01700.x