DOI QR코드

DOI QR Code

Inhibition of NAD(P)H:Quinone Oxidoreductase 1 by Dicumarol Reduces Tight Junction in Human Colonic Epithelial Cells

인간 대장상피세포 밀착연접 형성과정에서 NQO1 저해 효과

Hong, Ji;Zhang, Peng;Yoon, I Na;Kim, Ho
훙지;장펑;윤이나;김호

  • Received : 2016.02.15
  • Accepted : 2016.05.23
  • Published : 2016.05.30

Abstract

We previously showed that NAD(P)H:quinone oxidoreductase 1 (NQO1) knockout (KO) mice exhibited spontaneous inflammation with markedly increased mucosal permeability in the gut, and that NQO1 is functionally associated with regulating tight junctions in the mucosal epithelial cells that govern the mucosal barrier. Here, we confirm the role of NQO1 in the formation of tight junctions by human colonic epithelial cells (HT29). We treated HT29 cells with a chemical inhibitor of NQO1 (dicumarol; 10 μM), and examined the effect on the transepithelial resistance of epithelial cells and the protein expression levels of ZO1 and occludin (two known regulators of tight junctions between gut epithelial cells). The dicumarol-induced inhibition of NQO1 markedly reduced transepithelial resistance (a measure of tight junctions) and decreased the levels of the tested tight junction proteins. In vivo, luminal injection of dicumarol significantly increased mucosal permeability and decreased ZO1 and occludin protein expression levels in mouse guts. However, in contrast to the previous report that the epithelial cells of NQO1 KO mice showed marked down-regulations of the transcripts encoding ZO1 and occludin, these transcript levels were not affected in dicumarol-treated HT29 cells. This result suggests that the NQO1-depedent regulation of tight junction molecules may involve multiple processes, including both transcriptional regulation and protein degradation processes such as those governed by the ubiquitination/proteasomal, and/or lysosomal systems.

Keywords

Gut mucosal epithelial cells;gut inflammation;mucosal barrier function;NQO1;tight junction

References

  1. Berger, F., Ramirez-Hernandez, M. H. and Ziegler, M. 2004. The new life of a centenarian: signalling functions of NAD(P). Trends Biochem. Sci. 29, 111-118. https://doi.org/10.1016/j.tibs.2004.01.007
  2. Brehm, A., Liu, Y., Sheikh, A., Marrero, B., Omoyinmi, E., Zhou, Q., Montealegre, G., Biancotto, A., Reinhardt, A., de Jesus, A., Pelletier, A., Tsai, M., W. L., Remmers, E. F., Kardava, L., Hill, S., Kim, H., Lachmann, H. J., Megarbane, A., Chae, J. J., Brady, J., Castillo, R. D., Brown, D., Casano, A. V., Gao, L., Chapelle, D., Huang, Y., Stone, D., Chen, Y., Sotzny, F., Lee, C. C., Kastner, D. L., Torrelo, A., Zlotogorski, A., Moir, S., Gadina, M., McCoy, P., Wesley, R., Rother, K. I., W. Hildebrand, P., Brogan, P., Kruger, E., Aksentijevich, I. and Goldbach-Mansky, R. 2016. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J. Clin. Invest. 126, 782-795.
  3. Fan, X., Staitieh, B. S., Jensen, J. S., Mould, K. J., Greenberg, J. A., Joshi, P. C., Koval, M. and Guidot, D. M. 2013. Activating the Nrf2-mediated antioxidant response element restores barrier function in the alveolar epithelium of HIV-1 transgenic rats. Am. J. Physiol. Lung Cell Mol. Physiol. 305, L267-277. https://doi.org/10.1152/ajplung.00288.2012
  4. Hwang, J. H., Kim, D. W., Jo, E. J., Kim, Y. K., Jo, Y. S., Park, J. H., Yoo, S. K., Park, M. K., Kwak, T. H., Kho, Y. L., Han, J., Choi, H. S., Lee, S. H., Kim, J. M., Lee, I., Kyung, T., Jang, C., Chung, J., Kweon, G. R. and Shong, M. 2009. Pharmacological stimulation of NADH oxidation ameliorates obesity and related phenotypes in mice. Diabetes 58, 965-974. https://doi.org/10.2337/db08-1183
  5. Iskander, K., Li, J., Han, S., Zheng, B. and Jaiswal, A. K. 2006. NQO1 and NQO2 regulation of humoral immunity and autoimmunity. J. Biol. Chem. 281, 30917-30924. https://doi.org/10.1074/jbc.M605809200
  6. Jaiswal, A. K. 2000. Regulation of genes encoding NAD(P) H:quinone oxidoreductases. Free Radic. Biol. Med. 29, 254-262. https://doi.org/10.1016/S0891-5849(00)00306-3
  7. Kim, D. H., Lee, I. H., Nam, S. T., Hong, J., Zhang, P., Hwang, J. S., Seok, H., Choi, H., Lee, D. G., Kim, J. I. and Kim, H. 2014. Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin. Biochem. Biophys. Res. Commun. 448, 292-297. https://doi.org/10.1016/j.bbrc.2014.04.105
  8. Kim, D. H., Lee, I. H., Nam, S. T., Hong, J., Zhang, P., Lu, L. F., Hwang, J. S., Park, K. C. and Kim, H. 2015. Antimicrobial peptide, lumbricusin, ameliorates motor dysfunction and dopaminergic neurodegeneration in a mouse model of Parkinson′s disease. J. Microbiol. Biotechnol. 25, 1640-1647. https://doi.org/10.4014/jmb.1507.07011
  9. Kim, H., Kokkotou, E., Na, X., Rhee, S. H., Moyer, M. P., Pothoulakis, C. and Lamont, J. T. 2005. Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21 (WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology 129, 1875-1888. https://doi.org/10.1053/j.gastro.2005.09.011
  10. Kim, H., Rhee, S. H., Pothoulakis, C. and Lamont, J. T. 2007. Inflammation and apoptosis in Clostridium difficile enteritis is mediated by PGE2 up-regulation of Fas ligand. Gastroenterology 133, 875-886. https://doi.org/10.1053/j.gastro.2007.06.063
  11. Long, D. J., Iskander, K., Gaikwad, A., Arin, M., Roop, D. R., Knox, R., Barrios, R. and Jaiswal, A. K. 2002. Disruption of dihydronicotinamide riboside:quinone oxidoreductase 2 (NQO2) leads to myeloid hyperplasia of bone marrow and decreased sensitivity to menadione toxicity. J. Biol. Chem. 277, 46131-46139. https://doi.org/10.1074/jbc.M208675200
  12. Machado, J., Manfredi, L. H., Silveira, W. A., Goncalves, D. A., Lustrino, D., Zanon, N. M., Kettelhut, I. C. and Navegantes, L. C. 2015. Calcitonin gene-related peptide inhibits autophagic-lysosomal proteolysis through cAMP/PKA signaling in rat skeletal muscles. Int. J. Biochem. Cell Biol. 72, 40-50.
  13. Nam, S. T., Hwang, J. H., Kim, D. H., Park, M. J., Lee, I. H., Nam, H. J., Kang, J. K., Kim, S. K., Hwang, J. S., Chung, H. K., Shong, M., Lee, C. H. and Kim, H. 2014. Role of NADH: quinone oxidoreductase-1 in the tight junctions of colonic epithelial cells. BMB. Rep. 47, 494-499. https://doi.org/10.5483/BMBRep.2014.47.9.196
  14. Nam, S. T., Seok, H., Kim, D. H., Nam, H. J., Kang, J. K., Eom, J. H., Lee, M. B., Kim, S. K., Park, M. J., Chang, J. S., Ha, E. M., Shong, K. E., Hwang, J. S. and Kim, H. 2012. Clostridium difficile toxin A inhibits erythropoietin receptor-mediated colonocyte focal adhesion through in activation of Janus Kinase-2. J. Microbiol. Biotechnol. 22, 1629-1635. https://doi.org/10.4014/jmb.1207.07063
  15. Oh, G. S., Kim, K. J., Choi, J. H., Shen, A., Choe, S. K., Karna, A., Lee, S. H., Jo, H. J., Yang, S. H., Kwak, T. H., Lee, C. H., Park, R. and So, H. S. 2014. Pharmacological activation of NQO1 increases NAD levels and attenuates cisplatin-mediated acute kidney injury in mice. Kidney Int. 85, 547-560. https://doi.org/10.1038/ki.2013.330
  16. Palming, J., Sjoholm, K., Jernas, M., Lystig, T. C., Gummesson, A., Romeo, S., Lonn, L., Lonn, M., Carlsson, B. and Carlsson, L. M. 2007. The expression of NAD(P)H:quinone oxidoreductase 1 is high in human adipose tissue, reduced by weight loss, and correlates with adiposity, insulin sensitivity, and markers of liver dysfunction. J. Clin. Endocrinol. Metab. 92, 2346-2352. https://doi.org/10.1210/jc.2006-2476
  17. Pollak, N., Dolle, C. and Ziegler, M. 2007. The power to reduce: pyridine nucleotides--small molecules with a multitude of functions. Biochem. J. 402, 205-218. https://doi.org/10.1042/BJ20061638
  18. Radjendirane, V., Joseph, P., Lee, Y. H., Kimura, S., Klein-Szanto, A. J., Gonzalez, F. J. and Jaiswal, A. K. 1998. Disruption of the DT diaphorase (NQO1) gene in mice leads to increased menadione toxicity. J. Biol. Chem. 273, 7382-7389. https://doi.org/10.1074/jbc.273.13.7382
  19. Rushworth, S. A., MacEwan, D. J. and O′Connell, M. A. 2008. Lipopolysaccharide-induced expression of NAD(P)H: quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes. J. Immunol. 181, 6730-6737. https://doi.org/10.4049/jimmunol.181.10.6730
  20. Schnoder, L., Hao, W., Qin, Y., Liu, S., Tomic, I., Liu, X., Fassbender, K. and Liu, Y. 2016. Deficiency of neuronal p38alpha MAPK attenuates amyloid pathology in alzheimer disease mouse and cell models through facilitating lysosomal degradation of BACE1. J. Biol. Chem. 291, 2067- 2079. https://doi.org/10.1074/jbc.M115.695916
  21. Siegel, D., Yan, C. and Ross, D. 2012. NAD(P)H:quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. Biochem. Pharmacol. 83, 1033-1040. https://doi.org/10.1016/j.bcp.2011.12.017
  22. Yang, H. L., Lin, S. W., Lee, C. C., Lin, K. Y., Liao, C. H., Yang, T. Y., Wang, H. M., Huang, H. C., Wu, C. R. and Hseu, Y. C. 2015. Induction of Nrf2-mediated genes by Antrodia salmonea inhibits ROS generation and inflammatory effects in lipopolysaccharide-stimulated RAW264.7 macrophages. Food Funct. 6, 230-241.
  23. Zhu, H., Jia, Z., Zhang, L., Yamamoto, M., Misra, H. P., Trush, M. A. and Li, Y. 2008. Antioxidants and phase 2 enzymes in macrophages: regulation by Nrf2 signaling and protection against oxidative and electrophilic stress. Exp. Biol. Med. (Maywood) 233, 463-474. https://doi.org/10.3181/0711-RM-304

Cited by

  1. Dicoumarol Inhibits Multidrug Resistance Protein 1-Mediated Export Processes in Cultured Primary Rat Astrocytes pp.1573-6903, 2018, https://doi.org/10.1007/s11064-018-2680-y