DOI QR코드

DOI QR Code

Characterization of Organic Solvent Stable Lipase from Pseudomonas sp. BCNU 106

Pseudomonas sp. BCNU 106이 생산하는 유기용매 내성 리파아제의 특성

Choi, Hye Jung;Hwang, Min Jung;Kim, Dong Wan;Joo, Woo Hong
최혜정;황민정;김동완;주우홍

  • Received : 2016.01.12
  • Accepted : 2016.02.11
  • Published : 2016.05.30

Abstract

A crude extracellular lipase from solvent-tolerant bacterium Pseudomonas sp. BCNU 106 was highly stable in the broad pH range of 4-10 and at temperature of 37℃. Crude lipase of BCNU 106 exhibited enhanced stability in 25% organic solvents such as xylene (121.85%), hexane (120.35%), octane (120.41 %), toluene (118.14%), chloroform (103.66%) and dodecane (102.94%) and showed excellent stability comparable with the commercial immobilized enzyme. In addition, the stability of BCNU 106 lipase retained above 110% of its enzyme activity in the presence of Cu2+, Hg2+, Zn2+ and Mn2+, whereas Fe2+ strongly inhibited its stability. The detergents including tween 80, triton X-100 and SDS were positive signals for lipase stability. Because of its stability in multiple organic solvents, cations and surfactants, the Pseudomonas sp. BCNU 106 lipase could be considered as a potential biocatalyst in the industrial chemical processes without using immobilization.

Keywords

Lipolytic stability;organic solvent stable lipase;organic solvent-tolerant;Pseudomonas sp.

References

  1. Basheer, S. M., Chellappan, S., Beena, P. S., Sukumaran, R. K., Elyas, K. K. and Chandrasekaran, M. 2011. Lipase from marine Aspergillus awamori BTMFW032: production, partial purification and application in oil effluent treatment. N. Biotechnol. 28, 627-638. https://doi.org/10.1016/j.nbt.2011.04.007
  2. Ben Bacha, A., Moubayed, N. M. and Al‐Assaf, A. 2015. An organic solvent stable lipase from a newly isolated Staphylococcus aureus ALA1 strain with potential for use as an industrial biocatalyst. Biotechnol. Appl. Biochem. doi:10.1002/bab.1381. https://doi.org/10.1002/bab.1381
  3. Chiou, S. H. and Wu, W. T. 2004. Immobilization of Candida rugose lipase on chitosan with activation of the hydroxyl groups. Biomaterials 25, 197-204. https://doi.org/10.1016/S0142-9612(03)00482-4
  4. Choi, H. J., Hwang, M. J., Seo, J. Y. and Joo, W. H. 2013. Organic Solvent-tolerant Lipase from Pseudomonas sp. BCNU 154. J. Life Sci. 23, 1246-1251. https://doi.org/10.5352/JLS.2013.23.10.1246
  5. Choi, H. J., Kwon, G. S. and Joo, W. H. 2015. Organic Solvent-tolerant Lipase from Pseudomonas sp. BCNU 171. J. Life Sci. 25, 345-348. https://doi.org/10.5352/JLS.2015.25.3.345
  6. Choi, H. J., Seo, J. Y., Hwang, S. M., Lee, Y. I., Jeong, Y. K., Moon, J. Y. and Joo, W. H. 2013. Isolation and characterization of BTEX tolerant and degrading Pseudomonas putida BCNU 106. Biotechnol. Bioprocess Eng. 18, 1000-1007. https://doi.org/10.1007/s12257-012-0860-1
  7. Dahiya, P., Arora, P., Chaudhury, A., Chand, S. and Dilbaghi, N. 2010. Characterization of an extracellular alkaline lipase from Pseudomonas mendocina M-37. J. Basic Microbiol. 50, 420-426. https://doi.org/10.1002/jobm.200900377
  8. Fernandez-Lafuente, R. 2010. Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. J. Mol. Catal., B Enzym. 62, 197-212. https://doi.org/10.1016/j.molcatb.2009.11.010
  9. Gilbert, E. J. 1993. Pseudomonas lipases: biochemical properties and molecular cloning. Enzyme Microb. Technol. 15, 634-645. https://doi.org/10.1016/0141-0229(93)90062-7
  10. Hasan, F., Shah, A. A. and Hameed, A. 2006. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39, 235-251. https://doi.org/10.1016/j.enzmictec.2005.10.016
  11. Jaeger, K. E. and Reetz, M. T. 1998. Microbial lipases form versatile tools for biotechnology. Trends Biotechnol. 16, 396-403. https://doi.org/10.1016/S0167-7799(98)01195-0
  12. Jain, D. and Mishra, S. 2015. Multifunctional solvent stable Bacillus lipase mediated biotransformations in the context of food and fuel. J. Mol. Catal., B Enzym. 117, 21-30. https://doi.org/10.1016/j.molcatb.2015.04.002
  13. Ji, Q., Xiao, S., He, B. and Liu, X. 2010. Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa LK1 and its application of biodiesel production. J. Mol. Catal., B Enzym. 66, 264-269. https://doi.org/10.1016/j.molcatb.2010.06.001
  14. Jose, C., Austic, G. B., Bonetto, R. D., Burton, R. M. and Briand, L. E. 2013. Investigation of the stability of Novozym® 435 in the production of biodiesel. Catal. Today 213, 73-80. https://doi.org/10.1016/j.cattod.2013.02.013
  15. Ogino, H., Nakagawa, S., Shinya, K., Muto, T., Fujimura, N., Yasudo, N. and Ishikawa, H. 2000. Purification and characterization of organic solvent tolerant lipase from organic solvent tolerant Pseudomonas aeruginosa LST-03. J. Biosci. Bioeng. 89, 451-457. https://doi.org/10.1016/S1389-1723(00)89095-7
  16. Rodrigues, R. C. and Fernandez-Lafuente, R. 2010. Lipase from Rhizomucor meihei as an industrial biocatalyst in chemical process. J. Mol. Catal., B Enzym. 654, 1-22.
  17. Romdhane, I. B., Fendri, A, Gargouri, Y., Gargouri, A. and Belghith, H. 2010. A novel ther-moactive and alkaline lipase from Talaromyces thermophilus fungus for use inlaundry detergents. Biochem. Eng. J. 53, 112-120. https://doi.org/10.1016/j.bej.2010.10.002
  18. Samaei-Nouroozi, A., Rezaei, S., Khoshnevis, N., Doosti, M., Hajihoseini, R., Khoshayand, M. R. and Faramarzi, M. A. 2015. Medium-based optimization of an organic solvent-tol erant extracellular lipase from the isolated halophilic Alkalibacillus salilacus. Extremophiles 19, 933-947. https://doi.org/10.1007/s00792-015-0769-7
  19. Sharma, A. K., Tiwari, R. P. and Hoondal, G. S. 2001. Properties of a thermostable and solvent stable extracellular lipase from a Pseudomonas sp. AG-8. J. Basic Microbiol. 41, 363-366. https://doi.org/10.1002/1521-4028(200112)41:6<363::AID-JOBM363>3.0.CO;2-C
  20. Singh, A. K. and Mukhopadhyay, M. 2012. Overview of fungal lipase: a review. Appl. Biochem. Biotechnol. 166, 486-520. https://doi.org/10.1007/s12010-011-9444-3
  21. Tanaka, D., Yoneda, S., Yamashiro, Y., Sakatoku, A., Kayashima, T., Yamakawa, K. and Nakamura, S. 2012. Characterization of a new cold-adapted lipase from Pseudomonas sp. TK-3. Appl. Biochem. Biotechnol. 168, 327-338. https://doi.org/10.1007/s12010-012-9776-7
  22. Yele, Y. U. and Desai, K. 2015. A new thermostable and organic solvent-tolerant lipase from Staphylococcus warneri; Optimization of media and production conditions using statistical methods. Appl. Biochem. Biotechnol. 175, 855-869. https://doi.org/10.1007/s12010-014-1331-2

Cited by

  1. Improvement in solvent tolerance by exogenous glycerol in Pseudomonas sp. BCNU 106 vol.65, pp.2, 2017, https://doi.org/10.1111/lam.12754