압축 센싱을 이용한 주파수 영역의 초음파 감쇠 지수 예측

DOI QR코드

DOI QR Code

심재윤;김형석
Shim, Jaeyoon;Kim, Hyungsuk

  • 투고 : 2016.04.15
  • 심사 : 2016.05.31
  • 발행 : 2016.06.25

초록

압축 센싱은 기존의 섀넌/나이키스트 이론보다 낮은 샘플링률로 신호를 샘플링 하여도 원신호로 복원할 수 있다는 이론이다. 본 논문에서는 압축 센싱을 이용하여 반향 신호의 정량적 주파수 특성을 직접 추출하여 이를 이용한 초음파 감쇠 지수 예측 방법을 제안한다. 일반적인 초음파 감쇠 지수 예측 방법들은 시간 영역에서 수집된 반향 신호를 Fourier 변환 등을 통해 주파수 영역으로 변환하는데, 제안하는 예측 방법은 압축 센싱으로 수집된 데이터를 복원하는 과정에서 적용하는 basis 행렬을 이용하여 시간 영역으로의 완전한 신호 복원 없이 반향 신호의 주파수 특성을 직접 추출하여 감쇠 지수를 예측한다. 3가지의 basis 행렬을 통해 주파수 영역에서 복원된 반향 신호에 대하여 다중 참조 신호를 이용한 Centroid Downshift 방법으로 감쇠 지수를 예측하여 각각의 예측 정확도와 실행 시간을 비교 분석하였다. 컴퓨터 모의 실험 결과 이산 코사인 변환(DCT) 행렬을 적용하는 경우, 50%의 압축률에서는 압축 센싱을 적용하지 않은 경우와 0.35% 이내의 예측 정확도를 보였으며, 압축률을 70%까지 높이는 경우에도 약 6% 이내의 평균 예측 오차를 보였다. 제안한 압축 센싱을 적용한 반향 신호의 주파수 특성 추출 방법은 향후 주파수 영역의 다른 정량적 초음파 분석 방법에 적용할 수 있다.

키워드

ultrasound;attenuation;centroid downshift method;compressed sensing;basis matrix

참고문헌

  1. U. Techavipoo, T. Varghese, Q. Chen, T. A. Stiles, J. A. Zagzebski, G. R. Frank, "Temperature dependence of ultrasonic propagation speed and attenuation in excised canine liver tissue measured using transmitted and reflected pulses," Journal of Acoustical Society of America, vol.115, no.6, pp.2859-2865, June 2004. https://doi.org/10.1121/1.1738453
  2. Y. Levy, Y. Agnon, H. Azhari, "Measurement of speed of sound dispersion in soft tissues using a double frequency continuous wave method," Ultrasound Med. Biol, vol.32, no.7, pp.1065-1071, July 2006. https://doi.org/10.1016/j.ultrasmedbio.2006.04.003
  3. K. A. Wear, T. A. Stiles, G. R. Frank, E. L. Madsen, F. Cheng, E. J. Feleppa, C. S. Hall, B. S. Kim, P. Lee, W. D. O'Brien Jr, M. L. Oelze, B. I. Raju, K. K. Shung, T. A. Wilson, J. R. Yuan, "Interlaboratory comparison of ultrasonic backscatter coefficient measurements from 2 to 9 MHz," J. Ultrasound Med., vol.24, no.9, pp.1235-1250, September 2005. https://doi.org/10.7863/jum.2005.24.9.1235
  4. S. L. Bridal, C. Fournier, A. Coron, I. Leguerney, P. Laugier, "Ultrasonic backscatter and attenuation (11-27 MHz) variation with collagen fiber distribution in ex vivo human dermis," Ultrason. Imaging, vol.28, no.1, pp.23-40, January 2006. https://doi.org/10.1177/016173460602800103
  5. G. Treece, R. Prager, and A. Gee, "Ultrasound attenuation measurement in the presence of scatterer variation for reduction of shadowing and enhancement," IEEE Trans. UFFC, vol.52, no.12, pp.2346-2360, December 2005. https://doi.org/10.1109/TUFFC.2005.1563279
  6. S. W. Flax, N. J. Pelc, G. H. Glover, F. D. Gutmann, and M. McLachlan, "Spectral characterization and attenuation measurements in ultrasound," Ultrason. Imaging, vol.5, no.2, pp.95-116, April 1983. https://doi.org/10.1177/016173468300500201
  7. P. He, J. F. Greenleaf, "Application of stochastic-analysis to ultrasonic echoes - estimation of attenuation and tissue heterogeneity from peaks of echo envelope," Journal of Acoustical Society of America, vol.79, no.2, pp.526-534, February1986. https://doi.org/10.1121/1.393540
  8. H. S. Jang, T. K. Song, S. B. Park, "Ultrasound attenuation estimation in soft tissue using the entropy difference of pulsed echoes between two adjacent envelope segments," Ultrason. Imaging, vol.10, no.4, pp.248-264, October 1988. https://doi.org/10.1177/016173468801000402
  9. L. X. Yao, J. A. Zagzebski, and E. L. Madsen, "Backscatter coefficient measurements using a reference phantom to extract depth-dependent instrumentation factors," Ultrason. Imaging, vol.12, no.1, pp.58-70, January 1990. https://doi.org/10.1177/016173469001200105
  10. C. Kasai, K. Namekawa, A. Koyano, R. Omoto, "Real-time two-dimensional blood flow imaging using an autocorrelation technique," IEEE Trans. Sonics and Ultrasonics, vol.32, no.3, pp.458-464, May 1985. https://doi.org/10.1109/T-SU.1985.31615
  11. M. Fink, F. Hottier, and J. F. Cardoso, "Ultrasonic signal processing for in vivo attenuation measurement: short time Fourier analysis," Ultrason. Imaging, vol.5, no.2, pp.117-135, April 1983.
  12. David Donoho, "Compressed sensing," IEEE Trans. on Information Theory, vol.52, no.4, pp.1289-1306, April 2006. https://doi.org/10.1109/TIT.2006.871582
  13. C. Quinsac, A. Basarab, J. M. Girault, D. Kouame, "Compressed sensing of ultrasound images: Sampling of spatial and frequency domains," Proceedings of the IEEE Workshop on Signal Processing Systems, pp. 231-236, October 2010
  14. Kuc, R., Schwartz, M. and Von Micksy, L. "Parametric estimation of the acoustic attenuation coefficient slope for soft tissue," IEEE Ultrasonic Symposium Proceedings, 1976
  15. J. Shim and H. Kim, "Diffraction Compensation using Dual-Reference for Estimation of Ultrasound Attenuation", Information and Control Symposium pp.55-56, April 2011.
  16. E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inform. Theory, vol.52, no.2, pp.489-509, January 2006. https://doi.org/10.1109/TIT.2005.862083
  17. Y. Li and J. A. Zagzebski, "A frequency domain model for generating B-mode images with array transducers," IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, vol.46, no.3, pp.690-699, May 1999. https://doi.org/10.1109/58.764855