DOI QR코드

DOI QR Code

Kalman Filter Based Optimal Controllers in Free Space Optics Communication

  • Li, Zhaokun ;
  • Zhao, Xiaohui
  • Received : 2016.03.22
  • Accepted : 2016.05.25
  • Published : 2016.06.25

Abstract

There is no doubt that adaptive optics (AO) is the most promising method to compensate wavefront disturbance in free space optics communication (FSO). In order to improve the performance of the AO system described by discrete-time linear system model with time-delay and implicit phase turbulent model, new controllers based on a Kalman filter and its extensions are proposed. Based on the standard Kalman filter, we propose a fading memory filter to deal with the ruleless strong interference; sequential and U-D filters are applied to reduce implementation complexity for the embedded controllers. Theoretical analysis and the numerical simulations show that the proposed fading memory filter can upgrade the performance for AO systems in consideration of the unforeseen strong pulse interference, and the sequential and U-D filters perform well compared with a Kalman filter.

Keywords

Free space optics communication;Adaptive optics;Kalman filter

References

  1. C. Kulcsár, H. F. Raynaud, C. Petit, J. M. Conan, and P. V. Lesegno, “Optimal control, observers and integrators in adaptive optics,” Opt. Express 14, 7464-7476 (2006). https://doi.org/10.1364/OE.14.007464
  2. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford, 1998).
  3. M. C. Roggemann and B. M. Welsh, Imaging Through Turbulence (CRC Press, 1996).
  4. D. P. Looze, “Minimum variance control structure for adaptive optics systems,” J. Opt. Soc. Am. A 23, 603-612 (2006). https://doi.org/10.1364/JOSAA.23.000603
  5. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. A 66, 207-211 (1976). https://doi.org/10.1364/JOSA.66.000207
  6. G. M. Dai, “Modal wave-front reconstruction with Zernike polynomials and Karhunen - Loève functions,” J. Opt. Soc. Am. A 13, 1218-1225 (1996). https://doi.org/10.1364/JOSAA.13.001218
  7. R. N. Paschall, M. A. Von Bokern, and B. M. Welsh, “Design of a linear quadratic Gauss controller for an adaptive optics system,” in Proc. The 30th Conference on Decision and Control Brighton (Brighton, England, Dec. 1991), pp. 1761-1769.
  8. R. N. Paschall and D. J. Anderson, “Linear quadratic Gauss control of a deformable mirror adaptive optics system with time-delayed measurements,” Appl. Opt. 32, 6347-6358 (1993). https://doi.org/10.1364/AO.32.006347
  9. J. P. Folcher and M. Carbillet, “Linear quadratic Gaussian control for adaptive optics systems using a numerical atmospheric turbulence model,” in Proc. The Adaptive Optics for Extremely Large Telescope Conference (Victoria, Canada, Sept. 2001).
  10. D. P. Looze, M. Kasper, S. Hippler, O. Beker, and R. Weiss, “Optimal compensation and implementation for adaptive optics system,” Exp. Astron. 15, 67-88 (2003). https://doi.org/10.1023/B:EXPA.0000036150.62118.64
  11. D. P. Looze, “Discrete-time model of an adaptive optics system,” J. Opt. Soc. Am. A 24, 2850-2863 (2007). https://doi.org/10.1364/JOSAA.24.002850
  12. D. P. Looze, “Discrete-time models for adaptive optics systems with wavefront sensors using partial frame integration,” in Proc. Adaptive Optics: Analysis and Methods / Computational Optical Sensing and Imaging / Information Photonics / Signal Recovery and Synthesis Topical Meetings (Vancouver, Canada, Jun. 2005), CD.
  13. D. P. Looze, “Linear-quadratic-Gaussian control for adaptive optics systems using a hybrid model,” J. Opt. Soc. Am. A 26, 1-9 (2009).
  14. D. P. Looze, “Discrete-time model of an adaptive optics system with input delay,” International Journal of Control 83, 1217-1231 (2010). https://doi.org/10.1080/00207171003664836
  15. D. P. Looze, “Realization of systems with CCD-based measurements,” Automatic 41, 2005-2009 (2005). https://doi.org/10.1016/j.automatica.2005.05.022
  16. K. Hinnen, M. Verhaegen, and N. Doelman, “H2-optimal control of an adaptive optics system: part I, data-driven modeling of wavefront disturbance,” Proc. SPIE 5203, 75-85 (2005).
  17. K. Hinnen, N. Doelman, and M. Verhaegen, “H2-optimal control of an adaptive optics system: part II, closed-loop controller design,” Proc. SPIE 5903, 86-99 (2005).
  18. K. Hinnen, M. Verhaegen, and N. Doelman, “Exploiting the spatiotemporal correlation in adaptive optics using data-driven H2 optimal control,” J. Opt. Soc. Am. A 24, 1714-1725 (2007). https://doi.org/10.1364/JOSAA.24.001714
  19. K. Hinnen, M. Verhaegen, and N. Doelman, “A data-driven H2-optimal control approach for adaptive optics,” IEEE Trans. Control Syst. Technol. 16, 381-395 (2008). https://doi.org/10.1109/TCST.2007.903374
  20. B. L. Roux, J. M. Conan, C. Kulcsár, H. F. Raynaud, L. M. Mugnier, and T. Fusco, “Optimal control law for classic and multi-conjugate adaptive optics,” J. Opt. Soc. Am. A 21, 1261-1276 (2004). https://doi.org/10.1364/JOSAA.21.001261
  21. C. Petit, J. M. Conan, C. Kulcsár, H. F. Raynaud, and T. Fusco, “First laboratory validation of vibration filtering with LQG control law for adaptive optics,” Opt. Express 16, 87-97 (2008). https://doi.org/10.1364/OE.16.000087
  22. C. Petit, J. M. Conan, C. Kulcsár, and H. F. Raynaud, “Linear quadratic Gaussian control for adaptive optics and multi conjugate adaptive optics: experimental and numerical analysis,” J. Opt. Soc. Am. A 26, 1307-1325 (2009). https://doi.org/10.1364/JOSAA.26.001307
  23. C. Kulcsár, H. F. Raynaud, C. Petit, and J. M. Conan, “Minimum variance prediction and control for adaptive optics,” Automatica 48, 1939-1954 (2012). https://doi.org/10.1016/j.automatica.2012.03.030
  24. G. Sivo, C. Kulcsár, J. M. Conan, H. F. Raynaud, E. Gendron, A. Basden, F. Vidal, T. Morris, S. Meimon, C. Petit, D. Gratadour, O. Martin, Z. Hubert, A. Sevin, D. Perret, F. Chemla, G. Rousset, N. Dipper, G. Talbot, E. Younger, R. Myers, D. Henry, S. Todd, D. Atkinson, C. Dickson, and A. Longmore, “First on-sky SCAO validation of full LQG control with vibration mitigation on the CANARY pathfinder,” Opt. Express 22, 23565-23591 (2014). https://doi.org/10.1364/OE.22.023565
  25. A. Beghi, A. Cenedese, F. Maran, and A. Masiero, “A comparison of Kalman filter based algorithms for turbulence phase control in an adaptive optics system,” in Proc. The 47th IEEE Conference on Decision and Control (Cancun, Mexico, Dec. 2008), pp. 1839-1844.
  26. R. Fraanje, J. Rice, M. Verhaegen, and N. Doelman, "Fast reconstruction and prediction of frozen flow turbulence based on structured Kalman filtering," J. Opt. Soc. Am. A 27, A235-A245 (2010).
  27. J. Tesch and J. S. Gibson, “Optimal and adaptive control of aero-optical wavefronts for adaptive optics,” J. Opt. Soc. Am. A 29, 1625-1638 (2012).
  28. A. Faghihi, J. Tesch, and J. S. Gibson, “Identified state-space prediction model for aero-optical wavefronts,” Opt. Eng. 52, 071419 (2013). https://doi.org/10.1117/1.OE.52.7.071419
  29. J. Tesch, T. Truong, R. Burruss, and J. S. Gibson, “On-sky demonstration of optimal control for adaptive optics at Palomar Observatory,” Opt. Lett. 40, 1575-1578 (2015). https://doi.org/10.1364/OL.40.001575
  30. N. Y. Nan and J. S. Gibson, “Subapace sytem identification using a multichannel lattice filter,” in Proc. The 2004 American Control Conference (Boston, Massachusetts, USA, Jun. 2004), pp. 855-860.
  31. Y. T. Liu and J. Gibson, “Adaptive control in adaptive optics for directed-energy system,” Opt. Eng. 46, 046601 (2007). https://doi.org/10.1117/1.2724839
  32. S. Monirabbasi and J. S. Gibson, “Adaptive control in an adaptive optics experiment,” J. Opt. Soc. Am. A 27, A84-A96 (2010). https://doi.org/10.1364/JOSAA.27.000A84
  33. C. Dessenne, P. Y. Madec, and G. Rousset, “Model prediction for closed - loop adaptive optics,” Opt. Lett. 22, 1535-1537 (1997). https://doi.org/10.1364/OL.22.001535
  34. J. S. Gibson and C. C. Chang, “Adaptive optics: wavefront reconstruction by adaptive filtering and control,” in Proc. The 38th Conference on Decision & Control (Phoenix, Arizona, USA, Dec. 1999).
  35. Y. T. Liu and S. Gibson, “Adaptive optics with adaptive filtering and control,” in Proc. The 2004 American Control Conference (Boston, Massachusetts, USA, Jun. 2004), pp. 3176-3179.
  36. M. W. Oppenheimer and M. Pachter, “Adaptive optics for airborne platforms-Part 2: controller design,” Opt. Laser Technol. 34, 159-176 (2002). https://doi.org/10.1016/S0030-3992(01)00105-0
  37. S. Haykin, Adaptive Filter Theory, 4th ed. (Publishing House of Electronics Industry, 2002).
  38. D. Simon, Optimal State Estimate Kalman, H∞, and Nonlinear Approaches (A John Wiley & Sons Inc., 2006).
  39. D. C. Lay, Linear Algebra and Its Application (Addison Wesley, 2012).
  40. B. L. Roux, J. M. Conan, C. Kulcsár, H. F. Raynaud, L. M. Mugnier, and T. Fusco, “Optimal control law for multi-conjugate adaptive optics,” in Proc. SPIE - The International Society for Optical Engineering (USA, Feb. 2003).
  41. T. Weyrauch and M. A. Vorontsov, “Atmospheric compensation with a speckle beacon in strong scintillation conditions: directed energy and laser communication applications,” Appl. Opt. 44, 6388-6401 (2003).