Performance Enhancement of Cavity Assisted Photonic Crystal De-Multiplexerin Slow Light Regime

DOI QR코드

DOI QR Code

Vadjed-Samiei, Mohammad-Hashem;Aghababaeian, Hassan

  • 투고 : 2016.01.18
  • 심사 : 2016.05.26
  • 발행 : 2016.06.25

초록

This study first proposes a new version of a photonic crystal based de-multiplexer operating under the slow light regime, secondly analyses the structure numerically to demonstrate de-multiplexing operation and finally studies the impact of light speed on the performance of the proposed structure. The operation wavelength is 1.55 µm. The study indicates that, by adjusting the speed of light, around 0.1C, in the main waveguide and in the output channels’ waveguides, an enhancement in the performance of the de-multiplexer will be gained.

키워드

Photonic crystal;Slow light;Optical de-multiplexer

참고문헌

  1. D. A. B Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166-1185 (2009). https://doi.org/10.1109/JPROC.2009.2014298
  2. R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687-1706 (1993). https://doi.org/10.1109/5.248958
  3. P. Yeh and H. F. Taylor, “Contradirectional frequency-selective couplers for guided-wave optics,” Appl. Opt. 19, 2848-2855 (1980). https://doi.org/10.1364/AO.19.002848
  4. H.-D. Jang, K.-S. Kim, J.-H. Lee, and J.-C. Jeong, “Transmission performance of 40 gb/s pm duobinary signals due to fiber nonlinearities in DWDM systems using VSB filtering techniques,” J. Opt. Soc. Korea 13, 354-360 (2009). https://doi.org/10.3807/JOSK.2009.13.3.354
  5. D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, J. E. C. K. Raj, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on siliconfor optical interconnects,” Opt. Express 19, 2401-2409 (2011). https://doi.org/10.1364/OE.19.002401
  6. D. D. Do, J. W. An, N. Kim, and K. Y. Lee, “Gaussian apodization technique in holographic demultiplexer based on photopolymer,” J. Opt. Soc. Korea 7, 269-274 (2003). https://doi.org/10.3807/JOSK.2003.7.4.269
  7. Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823-1831 (2007). https://doi.org/10.1364/OE.15.001823
  8. A. Rostami, F. Nazaria, H. A. Banaei, and A. Bahrami, “A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure,” Photonics Nanostruct. Fundam. Appl. 8, 14-22 (2010). https://doi.org/10.1016/j.photonics.2009.12.002
  9. T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226-228 (2006). https://doi.org/10.1109/LPT.2005.860001
  10. Y. Wu, K. Hsu and T. Shih, “Thirty-two-channel densewavelength-division multiplexer based on cascade two-dimensional photonic crystal waveguide structure,” J. Opt. Soc. Am. B 24, 2075-2080 (2007).
  11. H. Benisty, C. Cambournac, F. Van Laere, and D. Van Thourhout, “Photonic-crystal demultiplexer with improved crosstalk by second-order cavity filtering,” IEEE J. Lightwave Technol. 28, 1201-1208 (2010). https://doi.org/10.1109/JLT.2010.2043057
  12. M. Thorhauge, L. H. Frandsen, and P. I. Borel, “Efficient photonic crystal directional couplers,” Opt. Lett. 28, 1525-1527 (2003). https://doi.org/10.1364/OL.28.001525
  13. M. Bayindir and E. Ozbay, “Band-dropping via coupled photonic crystal waveguides,” Opt. Express 10, 1279-1284 (2002). https://doi.org/10.1364/OE.10.001279
  14. F. S.-S. Chien, Y.-J. Hsu, W.-F. Hsieh, and S.-C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119-1125 (2004). https://doi.org/10.1364/OPEX.12.001119
  15. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3, 4-11 (1998). https://doi.org/10.1364/OE.3.000004
  16. S. Robinson and R. Nakkeeran, “Photonic crystal ring resonatorbased add drop filters: a review,” Opt. Eng. 52, 060901-1~060901-11 (2013). https://doi.org/10.1117/1.OE.52.6.060901
  17. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219-226 (2007). https://doi.org/10.1364/OE.15.000219
  18. T. F. Krauss, “Why do we need slow light,” Nature Photon. 2, 448-450 (2008). https://doi.org/10.1038/nphoton.2008.139
  19. J. M. Brosi, “Slow-light photonic crystal devices for high-speed optical signal processing,” Karlsruhe Series in Photon. & Comm., vol. 4 (2008).
  20. H. Aghababaeian and M. H. Vadjed Samiei, “Compact and temperature independent electro-optic switch based on slotted silicon photonic crystal directional coupler,” J. Opt. Soc. Korea 16, 282-287 (2012). https://doi.org/10.3807/JOSK.2012.16.3.282
  21. A. Akosman, M. Mutlu, H. Kurt, and E. Ozbay, “Compact wavelength de-multiplexer design using slow light regime of photonic crystal waveguides,” Opt. Express 19, 24129-24138 (2011). https://doi.org/10.1364/OE.19.024129
  22. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D: Appl. Phys. 40, 2666-2670 (2007). https://doi.org/10.1088/0022-3727/40/9/S07
  23. T. Baba and D. Mori, “Slow light engineering in photonic crystals,” J. Phys. D: Appl. Phys. 40, 2659-2665 (2007). https://doi.org/10.1088/0022-3727/40/9/S06
  24. H. Aghababaeian, M. H. Vadjed-Samiei, and N. Granpayeh, “Temperature stabilization of group index in silicon slotted photonic crystal waveguides,” J. Opt. Soc. Korea 15, 398-402 (2011). https://doi.org/10.3807/JOSK.2011.15.4.398
  25. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866-4868 (2004). https://doi.org/10.1063/1.1815066
  26. http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands
  27. http://optics.synopsys.com/rsoft/rsoft-passive-device-bandsolve.html
  28. http://optics.synopsys.com/rsoft/rsoft-passive-device-fullwave.html

피인용 문헌

  1. 1. Ultra-wide band dispersionless slow light waveguides vol.50, pp.1, 2018, doi:10.3807/JOSK.2016.20.3.401