Performance Enhancement of Cavity Assisted Photonic Crystal De-Multiplexerin Slow Light Regime



Vadjed-Samiei, Mohammad-Hashem;Aghababaeian, Hassan

  • 투고 : 2016.01.18
  • 심사 : 2016.05.26
  • 발행 : 2016.06.25


This study first proposes a new version of a photonic crystal based de-multiplexer operating under the slow light regime, secondly analyses the structure numerically to demonstrate de-multiplexing operation and finally studies the impact of light speed on the performance of the proposed structure. The operation wavelength is 1.55 µm. The study indicates that, by adjusting the speed of light, around 0.1C, in the main waveguide and in the output channels’ waveguides, an enhancement in the performance of the de-multiplexer will be gained.


Photonic crystal;Slow light;Optical de-multiplexer


  1. D. A. B Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166-1185 (2009).
  2. R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687-1706 (1993).
  3. P. Yeh and H. F. Taylor, “Contradirectional frequency-selective couplers for guided-wave optics,” Appl. Opt. 19, 2848-2855 (1980).
  4. H.-D. Jang, K.-S. Kim, J.-H. Lee, and J.-C. Jeong, “Transmission performance of 40 gb/s pm duobinary signals due to fiber nonlinearities in DWDM systems using VSB filtering techniques,” J. Opt. Soc. Korea 13, 354-360 (2009).
  5. D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, J. E. C. K. Raj, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on siliconfor optical interconnects,” Opt. Express 19, 2401-2409 (2011).
  6. D. D. Do, J. W. An, N. Kim, and K. Y. Lee, “Gaussian apodization technique in holographic demultiplexer based on photopolymer,” J. Opt. Soc. Korea 7, 269-274 (2003).
  7. Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823-1831 (2007).
  8. A. Rostami, F. Nazaria, H. A. Banaei, and A. Bahrami, “A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure,” Photonics Nanostruct. Fundam. Appl. 8, 14-22 (2010).
  9. T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226-228 (2006).
  10. Y. Wu, K. Hsu and T. Shih, “Thirty-two-channel densewavelength-division multiplexer based on cascade two-dimensional photonic crystal waveguide structure,” J. Opt. Soc. Am. B 24, 2075-2080 (2007).
  11. H. Benisty, C. Cambournac, F. Van Laere, and D. Van Thourhout, “Photonic-crystal demultiplexer with improved crosstalk by second-order cavity filtering,” IEEE J. Lightwave Technol. 28, 1201-1208 (2010).
  12. M. Thorhauge, L. H. Frandsen, and P. I. Borel, “Efficient photonic crystal directional couplers,” Opt. Lett. 28, 1525-1527 (2003).
  13. M. Bayindir and E. Ozbay, “Band-dropping via coupled photonic crystal waveguides,” Opt. Express 10, 1279-1284 (2002).
  14. F. S.-S. Chien, Y.-J. Hsu, W.-F. Hsieh, and S.-C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119-1125 (2004).
  15. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3, 4-11 (1998).
  16. S. Robinson and R. Nakkeeran, “Photonic crystal ring resonatorbased add drop filters: a review,” Opt. Eng. 52, 060901-1~060901-11 (2013).
  17. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219-226 (2007).
  18. T. F. Krauss, “Why do we need slow light,” Nature Photon. 2, 448-450 (2008).
  19. J. M. Brosi, “Slow-light photonic crystal devices for high-speed optical signal processing,” Karlsruhe Series in Photon. & Comm., vol. 4 (2008).
  20. H. Aghababaeian and M. H. Vadjed Samiei, “Compact and temperature independent electro-optic switch based on slotted silicon photonic crystal directional coupler,” J. Opt. Soc. Korea 16, 282-287 (2012).
  21. A. Akosman, M. Mutlu, H. Kurt, and E. Ozbay, “Compact wavelength de-multiplexer design using slow light regime of photonic crystal waveguides,” Opt. Express 19, 24129-24138 (2011).
  22. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D: Appl. Phys. 40, 2666-2670 (2007).
  23. T. Baba and D. Mori, “Slow light engineering in photonic crystals,” J. Phys. D: Appl. Phys. 40, 2659-2665 (2007).
  24. H. Aghababaeian, M. H. Vadjed-Samiei, and N. Granpayeh, “Temperature stabilization of group index in silicon slotted photonic crystal waveguides,” J. Opt. Soc. Korea 15, 398-402 (2011).
  25. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866-4868 (2004).

피인용 문헌

  1. 1. Ultra-wide band dispersionless slow light waveguides vol.50, pp.1, 2018, doi:10.3807/JOSK.2016.20.3.401