DOI QR코드

DOI QR Code

High-precision THz Dielectric Spectroscopy of Tris-HCl Buffer

  • Lee, Soonsung ;
  • Kang, Hyeona ;
  • Do, Youngwoong ;
  • Lee, Gyuseok ;
  • Kim, Jinwoo ;
  • Han, Haewook
  • Received : 2016.04.29
  • Accepted : 2016.06.01
  • Published : 2016.06.25

Abstract

Tris-HCl buffer solution is extensively used in biochemistry and molecular biology to maintain a stable pH for biomolecules such as nucleic acids and proteins. Here we report on the high-precision THz dielectric spectroscopy of a 10 mM Tris-HCl buffer. Using a double Debye model, including conductivity of ionic species, we measured the complex dielectric functions of Tris-HCl buffer. The fast relaxation time of water molecules in Tris-HCl buffer is ~20% longer than that in pure water while the slow relaxation time changes little. This means that the reorientation dynamics of Tris-HCl buffer with such a low Tris concentration is quite different from that of pure water.

Keywords

THz time-domain spectroscopy;Debye relaxation;Tris-HCl buffer

References

  1. G. Gomori, “Buffers in the range of pH 6.5 to 9.6,” Exp. Biol. Med. 62, 33-34 (1946). https://doi.org/10.3181/00379727-62-15361
  2. A. Shundrovsky, C. L. Smith, J. T. Lis, C. L. Peterson, and M. D. Wang, “Proving SWI/SNF remodeling of the nucleosome by unzipping single DNA molecules,” Nat. Struct. Mol. Biol. 13, 549-554 (2006). https://doi.org/10.1038/nsmb1102
  3. M. I. Wallace, L. Ying, S. Balasubramanian, and D. Klenerman, “FRET Fluctuation Spectroscopy: exploring the conformational dynamics of a DNA hairpin loop,” J. Phys. Chem. B. 104, 11551-11555 (2000). https://doi.org/10.1021/jp001560n
  4. T. Bentin and P. E. Nielsen, “Enhanced peptide nucleic acid binding to supercoiled DNA: possible implications for DNA “breathing” dynamics,” Biochem. 35, 8863-8869 (1996). https://doi.org/10.1021/bi960436k
  5. T. Tanaka and H. Hidaka, “Hydrophobic regions function in calmodulin-enzyme(s) interactions,” J. Biol. Chem. 255, 11078-11080 (1980).
  6. J. Wang, E. Palecek, P. E. Nielsen, G. Rivas, X. Cai, H. Shiraishi, N. Dontha, D. Luo, and P. A. M. Farias, “Peptide nucleic acid probes for sequence-specific DNA biosensors,” J. Am. Chem. Soc. 118, 7667-7670 (1996). https://doi.org/10.1021/ja9608050
  7. P. Arenkov, A. Kukhtin, A. Gemmell, S. Voloshchuk, V. Chupeeva, and A. Mirzabekov, “Protein microchips: use for immunoassay and enzymatic reactions,” Anal. Biochem. 278, 123-131 (2000). https://doi.org/10.1006/abio.1999.4363
  8. Z. Chang, H. Fan, K. Zhao, M. Chen, P. He, and Y. Fang, “Electrochemical DNA biosensors based on palladium nanoparticles combined with carbon nanotubes,” Electroanal. 2, 131-136 (2008).
  9. Y. Heyman, A. Buxboim, S. G. Wolf, S. S. Daube, and R. H. Bar-Ziv, “Cell-free protein synthesis and assembly on a biochip,” Nat nanotechnol. 7, 374-378 (2012). https://doi.org/10.1038/nnano.2012.65
  10. S. Siddiquee, K. Rovina, N. A. Yusof, and K. F. Rodrigues, “Nanoparticle-enhanced electrochemical biosensor with DNA immobilization and hybridization of Trichoderma harzianum gene,” Sens. Biosens. Res. 2, 16-22 (2014).
  11. A. Ulianas, L. Y. Heng, M. Ahmad, H. Y. Lau, Z. Ishak, and T. L. Ling, “A regenerable screen-printed DNA biosensor based on acrylic microsphere-gold nanoparticle composite for genetically modified soybean determination,” Sens. Actuators B 190, 694-701 (2016).
  12. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52, 2438-2446 (2004). https://doi.org/10.1109/TMTT.2004.835916
  13. J. Son, “Terahertz electromagnetic interactions with biological matter and their applications,” J. Appl. Phys 105, 102033 (2009). https://doi.org/10.1063/1.3116140
  14. B. M. Fischer, M. Walther, and P. Uhd Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47, 3807-3814 (2002). https://doi.org/10.1088/0031-9155/47/21/319
  15. A. G. Markelz, J. R. Knab, J. Y. Chen, and Y. He, “Protein dynamical transition in terahertz dielectric response,” Chem. Phys. Lett. 442, 413-417 (2007). https://doi.org/10.1016/j.cplett.2007.05.080
  16. J. Xu, K. W. Plaxco, and S. J. Allen, “Absorption spectra of liquid water and aqueous buffers between 0.3 and 3.72 THz,” J. Chem. Phys. 124, 036101 (2006). https://doi.org/10.1063/1.2151267
  17. B. Born, S. J. Kim, S. Ebbinghaus, M. Gruebele, and M. Havenith, “The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin,” Faraday. Discuss. 141, 161-173 (2009). https://doi.org/10.1039/B804734K
  18. S. Oh, J. Son, O. Yoo, and D. Lee, “Terahertz characteristics of electrolytes in aqueous Luria-Bertani media,” J. Appl. Phys. 102, 074702 (2007). https://doi.org/10.1063/1.2786558
  19. A. Sihvola. Electromagnetic Mixing Formulas and Applications (IET Electromagnetic Waves Series 47, London, 1999).
  20. L. L. Latour, K. Svoboda, P. P. Mitra, and C. H. Sotak, “Time-dependent diffusion of water in a biological model system,” Proc. Natl. Acad. Sci. 91, 1229-1233 (1994). https://doi.org/10.1073/pnas.91.4.1229
  21. E. M. Johnson, D. A. Berk, R. K. Jain, and W. M. Deen, “Hindered Diffusion in Agarose Gels: Test of Effective Medium Model,” Biophys. J. 70, 1017-1026 (1996). https://doi.org/10.1016/S0006-3495(96)79645-5
  22. S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995).
  23. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Indust. Appl. Math. 11, 431-441 (1963). https://doi.org/10.1137/0111030
  24. M. Koeberg, C. C. Wu, D. Kim, and M. Bonn, “THz dielectric relaxation of ionic liquid: water mixtures,” Chem. Phys. Lett. 439, 60-64 (2007). https://doi.org/10.1016/j.cplett.2007.03.075