Position Estimator Employing Kalman Filter for PM Motors Driven with Binary-type Hall Sensors



Lee, Dong-Myung

  • 투고 : 2015.10.08
  • 심사 : 2016.01.25
  • 발행 : 2016.07.01


Application of vector control scheme for consumer products is enlarging to improve control performance. For the field-oriented control, accurate position detection is essential and generally requires expensive sensors. On the other hand, cost-reduction is important in home appliances, so that binary-type Hall-effect sensors are commonly used rather than using an expensive sensor such as an encoder. The control performance is directly influenced by the accuracy of the position information, and there exist non-uniformities related to Hall sensors in electrical and mechanical aspects, which result in distorted position information. Therefore, to get high-precision position information from low-resolution Hall sensors, this paper proposes a new position estimator consisting of a Kalman filter and feedforward compensation scheme, which generates a linearly changing position signal. The efficacy of the proposed scheme is verified by simulation and experimental results carried out with a 48-pole permanent magnet motor.


Kalman filter;Position estimation;Hall-effect sensor;Observer


  1. S. Y. Kim, C. C. Choi, K. J. Lee, and W. T. Lee, “An improved rotor position estimation with vector tracking observer in PMSM drives with low resolution Hall-effect sensors,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4078-4086, 2011. https://doi.org/10.1109/TIE.2010.2098367
  2. J. D. R. Dominguez, A. Navarrete, M. A. Meza, A. G. Loukianov, and J. Cañedo, “Digital sliding-mode sensorless control for surface-mounted PMSM,” IEEE Trans. Ind. Informat., vol. 10, no. 1, pp. 137-151, Feb. 2014. https://doi.org/10.1109/TII.2013.2262280
  3. J. Fang, X. Zhou, and G. Liu, “Instantaneous torque control of small inductance brushless DC motor,” IEEE Trans. Power Elect., vol. 27, no. 12, pp. 4952-4964, Dec. 2012. https://doi.org/10.1109/TPEL.2012.2193420
  4. Z. Feng and P. P. Acarnley, “Extrapolation technique for improving the effective resolution of position encoders in permanent-magnet motor drives,” IEEE Trans. Mechatron., vol. 13, no. 4, pp. 410-415, Aug. 2008. https://doi.org/10.1109/TMECH.2008.2001689
  5. P. B. Beccue, S. D. Pekarek, B. J. Deken, and A. C. Koenig, “Compensation for asymmetries and misalignment in a Hall-effect position observer used in PMSM torque-ripple control,” IEEE Trans. Ind. Appl., vol. 43, no. 2, pp. 560-570, Mar./Apr. 2007. https://doi.org/10.1109/TIA.2006.889883
  6. M. C. Harke, G. D. Donato, F. G. Capponi, T. R. A. Tesch, and R. D. Lorenz, “Disturbance torque and motion state estimation with low-resolution position interfaces using heterodyning observers,” IEEE Trans. Indus. Appli., vol. 44, no. 1, pp. 124-134, Jan/Feb. 2008. https://doi.org/10.1109/TIA.2007.912736
  7. A. Yoo, S. K. Sul, D. C. Lee, and C.S. Jun, “Novel speed and rotor position estimation strategy using a dual observer for low-resolution position sensors,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2897-2906, Dec. 2009. https://doi.org/10.1109/TPEL.2009.2022969
  8. D. M. Lee, D. C. Lim, and H. J. Ahn, “Position linearisation scheme for permanent magnet synchronous motor drive of washing machine using low-resolution hall sensors,” IET Elect. Letters, vol. 51, no. 22, pp. 1765-1767, Oct. 2015. https://doi.org/10.1049/el.2015.1878
  9. F. G. Capponi, G. Donato, L. Ferraro, O. Honorati, M. C. Harke, and R. D. Lorenz, “AC brushless drive with low-resolution Hall-effect sensors for surface-mounted PM machines,” IEEE Trans. Ind. Appl., vol. 42, no. 2, pp. 526–535, Mar./Apr. 2006. https://doi.org/10.1109/TIA.2005.863904
  10. Z. M. Dalala, Y. H. Cho, and J. H. Lai, “Enhanced vector tracking observer for rotor position estimation for PMSM drives with low resolution Hall-effect position sensors,” IEEE Inter. Electric Machines & Drives Conf., pp. 484-491, 2013.
  11. T. Payne, S. Rice, D. Able, and D. Dickerson, “Electronic washer control including automatic load size determination, fabric blend determination and adjustable washer means,” US Patent 5161393A, 1992.
  12. F. Altinier, T. Girotto, and M. Giovagnoni, “Method for estimating the moment of inertia of the rotating unit of a washing machine, and washing machine implementing said method,” US Patent 8336378, 2012.
  13. Z. Aydogmus and O. Aydogmus, "A comparison of artificial neural network and extended Kalman filter based sensorless speed estimation," Measurement Elsevier, vol. 63, pp. 152-158, March 2015. https://doi.org/10.1016/j.measurement.2014.12.010
  14. N. K. Quang, N. T. Hieu, and Q. P. Ha, “FPGA-based sensorless PMSM speed control using reduced-order extended Kalman filters,” IEEE Trans. Indus. Elect., vol. 61, no. 12, pp. 6574-6582, Dec. 2014. https://doi.org/10.1109/TIE.2014.2320215
  15. Y. J. Han, C.Y. Lee, and Y. Sun, “A study on the sensor applications for position detection and guideway monitoring in high speed Maglev,” Modern Mech. Engineering, vol. 4, no. 4, pp.165-174, 2014. https://doi.org/10.4236/mme.2014.44016
  16. Z. Chen, Y. Fu, and C. C. Mi, “State of charge estimation of lithium-ion batteries in electric drive vehicles using extended Kalman filtering,” IEEE Trans. Vehicular Technology, vol. 62, no. 3, pp.1020-1030, March 2013. https://doi.org/10.1109/TVT.2012.2235474
  17. H. W. Sim, J. S. Lee, and K. B. Lee, “On-line parameter estimation of interior permanent magnet synchronous motor using an extended Kalman filter,” Journal of Electr. Eng. Tech., vol. 9, no. 2, pp. 600-608, March. 2014. https://doi.org/10.5370/JEET.2014.9.2.600

피인용 문헌

  1. 1. Sensorless Scheme for Interior Permanent Magnet Synchronous Motors with a Wide Speed Control Range vol.16, pp.6, 2016, doi:10.5370/JEET.2016.11.4.931