DOI QR코드

DOI QR Code

Low Reverse Saturation Current Density of Amorphous Silicon Solar Cell Due to Reduced Thickness of Active Layer

Iftiquar, S M;Yi, Junsin

  • 투고 : 2015.10.15
  • 심사 : 2016.01.02
  • 발행 : 2016.07.01

초록

One of the most important characteristic curves of a solar cell is its current density-voltage (J-V) curve under AM1.5G insolation. Solar cell can be considered as a semiconductor diode, so a diode equivalent model was used to estimate its parameters from the J-V curve by numerical simulation. Active layer plays an important role in operation of a solar cell. We investigated the effect thicknesses and defect densities (Nd) of the active layer on the J-V curve. When the active layer thickness was varied (for Nd = 8×1017 cm-3) from 800 nm to 100 nm, the reverse saturation current density (Jo) changed from 3.56×10-5 A/cm2 to 9.62×10-11 A/cm2 and its ideality factor (n) changed from 5.28 to 2.02. For a reduced defect density (Nd = 4×1015 cm-3), the n remained within 1.45≤n≤1.92 for the same thickness range. A small increase in shunt resistance and almost no change in series resistance were observed in these cells. The low reverse saturation current density (Jo = 9.62×10-11 A/cm2) and diode ideality factor (n = 2.02 or 1.45) were observed for amorphous silicon based solar cell with 100 nm thick active layer.

키워드

Amorphous silicon solar cell;Diode equivalent model;Active layer thickness

참고문헌

  1. J. C. H. Phang, D. S. H. Chan, J. R. Phillips, Accurate analytical method for the extraction of solar cell model parameters, Electron Lett, 20 (1984) 406-408. https://doi.org/10.1049/el:19840281
  2. D. S. H. Chan, J. R. Phillips, J. C. H. Phang, A comparative study of extraction methods for solar cell model parameters, Solid-State Electron., 29 (1986) 329-337. https://doi.org/10.1016/0038-1101(86)90212-1
  3. S. Voswinckel, V. Wesselak, B. Lustermann, Behaviour of amorphous silicon solar modules: A parameter study, Sol. Energy, 92 (2013) 206-213. https://doi.org/10.1016/j.solener.2013.03.006
  4. K. I. Kurobe, H. Matsunami, New two-diode model for detailed analysis of multicrystalline silicon solar cells, Jpn J Appl Phys Part 1 Regul Pap Short Note Rev Pap, 44 (2005) 8314-8321. https://doi.org/10.1143/JJAP.44.8314
  5. C. Voz, J. Puigdollers, J.M. Asensi, S. Galindo, S. Cheylan, R. Pacios, P. Ortega, R. Alcubilla, Analysis of the dynamic short-circuit resistance in organic bulk-heterojunction solar cells: Relation to the charge carrier collection efficiency, Org. Electron.: phys. mater. appl., 14 (2013) 1643-1648.
  6. S. Yamamoto, A. Orimo, H. Ohkita, H. Benten, S. Ito, Molecular understanding of the open-circuit voltage of polymer:Fullerene solar cells, Adv. Energy Mater., 2 (2012) 229-237. https://doi.org/10.1002/aenm.201100549
  7. R. Y. Yang, H. Y. Chen, F. D. Lai, Performance degradation of dye-sensitized solar cells induced by electrolytes, Adv. Mater. Sci. Eng., 2012 (2012).
  8. M. Zeman, J. A. Willemen, S. Solntsev, J. W. Metselaar, Extraction of amorphous silicon solar cell parameters by inverse modelling, Sol Energ Mater Sol Cells, 34 (1994) 557-563. https://doi.org/10.1016/0927-0248(94)90085-X
  9. J. Chen, Z. R. Du, F. Ma, F. Lin, D. Sarangi, B. Hoex, A. G. Aberle, Accurate extraction of the series resistance of aluminum local back surface field silicon wafer solar cells, Sol Energ Mater Sol Cells, 133 (2015) 113-118. https://doi.org/10.1016/j.solmat.2014.10.003
  10. J. Appelbaum, A. Peled, Parameters extraction of solar cells - A comparative examination of three methods, Sol Energ Mater Sol Cells, 122 (2014) 164-173. https://doi.org/10.1016/j.solmat.2013.11.011
  11. Z. Arefinia, A. Asgari, Optical and electrical modeling of solar cells based on graphene/Si nanowires with radial p–i–n junctions, Sol Energ Mater Sol Cells, 137 (2015) 146-153. https://doi.org/10.1016/j.solmat.2015.01.032
  12. E. Cuce, P. M. Cuce, T. Bali, An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters, Appl. Energy, 111 (2013) 374-382. https://doi.org/10.1016/j.apenergy.2013.05.025
  13. S. M. Iftiquar, J. Jung, H. Park, J. Cho, C. Shin, J. Park, J. Jung, S. Bong, S. Kim, J. Yi, Effect of light trapping in an amorphous silicon solar cell, Thin Solid Films, 587 (2015) 117-125. https://doi.org/10.1016/j.tsf.2015.02.037
  14. S. M. Iftiquar, J. Yi, Determining criteria for near-ideal operation of amorphous silicon solar cell, Conference PVSEC-25 (Nov. 15-20, 2015, Busan Korea), Abstact number: SiF-O-15.
  15. H. Sakai, T. Yoshida, S. Fujikake, T. Hama, Y. Ichikawa, Effect of p/i interface layer on dark J-V characteristics and Voc in p-i-n solar cells, J. Appl. Phys. 67 (1990) 3494 – 3499. https://doi.org/10.1063/1.345340
  16. S. M. Iftiquar, J. Jung, C. Shin, H. Park, J. Park, J. Jung, J. Yi, Light management for enhanced efficiency of textured n-i-p type amorphous silicon solar cell, Sol Energ Mater Sol Cells, 132 (2014) 348-355.
  17. S. M. Iftiquar, J. Jang, H. Park, C. Shin, J. Park, J. Jung, S. Kim, J. Yi, Analysis of optical absorption and quantum efficiency due to light trapping in a n-i-p type amorphous silicon solar cell with textured back reflector, Phys. Status Solidi A Appl. Mater. Sci., 211 (2014) 924-931. https://doi.org/10.1002/pssa.201330291

피인용 문헌

  1. Silicon germanium active layer with graded band gap and µc-Si:H buffer layer for high efficiency thin film solar cells vol.56, 2016, https://doi.org/10.1016/j.mssp.2016.08.011
  2. Investigation of highly efficient methyl ammonium lead halide perovskite solar cell with non-textured front surface vol.148, 2017, https://doi.org/10.1016/j.ijleo.2017.08.141
  3. Reduction in Photocurrent Loss and Improvement in Performance of Single Junction Solar Cell Due to Multistep Grading of Hydrogenated Amorphous Silicon Germanium Active Layer 2017, https://doi.org/10.1007/s12633-016-9527-4