DOI QR코드

DOI QR Code

Arc-length and explicit methods for static analysis of prestressed concrete members

Mercan, Bulent;Stolarski, Henryk K.;Schultz, Arturo E.

  • 투고 : 2015.07.21
  • 심사 : 2016.03.24
  • 발행 : 2016.07.25

초록

This paper compares the arc-length and explicit dynamic solution methods for nonlinear finite element analysis of prestressed concrete members subjected to monotonically increasing loads. The investigations have been conducted using an L-shaped, prestressed concrete spandrel beam, selected as a highly nonlinear problem from the literature to give insight into the advantages and disadvantages of these two solution methods. Convergence problems, computational effort, and quality of the results were investigated using the commercial finite element package ABAQUS. The work in this paper demonstrates that a static analysis procedure, based on the arc-length method, provides more accurate results if it is able to converge on the solution. However, it experiences convergence problems depending upon the choice of mesh configuration and the selection of concrete post-cracking response parameters. The explicit dynamic solution procedure appears to be more robust than the arc-length method in the sense that it provides acceptable solutions in cases when the arc-length approach fails, however solution accuracy may be slightly lower and computational effort may be significantly larger. Furthermore, prestressing forces must be introduced into the finite element model in different ways for the explicit dynamic and arc-length solution procedures.

키워드

finite element analysis;prestressed;concrete;cracking;tension stiffening;arc-length method;riks method;explicit dynamic method

참고문헌

  1. Abdalla, H. and Kennedy, J.B. (1995), "Dynamic analysis of prestressed concrete beams with openings", J. Struct. Eng., 121(7), 1058-1068. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:7(1058)
  2. American Concrete Institute (ACI) Committee 318 (2011), "Building code requirements for structural concrete", Farmington Hills, Mich.
  3. Bathe, K.J. (1996), Finite Element Procedures, New Jersey, Prentice Hall.
  4. Belytschko, T., Organ, D. and Gerlach, C. (2000), "Element-free Galerkin methods for dynamic fracture in concrete", Comput. Method. Appl. Mech. Eng., 187(3-4), 385-399. https://doi.org/10.1016/S0045-7825(00)80002-X
  5. Broo, H., Lundgren, K. and Engstrom, B. (2005), "Shear and torsion interaction in prestressed hollow core units", Mag. Concrete Res., 57(9), 521-533. https://doi.org/10.1680/macr.2005.57.9.521
  6. Chang, S.Y. (2014), "Numerical dissipation for explicit, unconditionally stable time integration methods", Earthq. Struct., 7(2), 159-178. https://doi.org/10.12989/eas.2014.7.2.159
  7. Chen, W.F (1982), Plasticity in reinforced concrete, McGraw-Hill, New York.
  8. Crisfield, M.A. (1981), "A fast incremental/iteration solution procedure that handles snap-through", Comput. Struct., 13, 55-62. https://doi.org/10.1016/0045-7949(81)90108-5
  9. Gopalaratnam, V.S. and Shah, S.P. (1985), "Softening response of plain concrete in direct tension", American Concrete Institute J., 82(3), 310-323.
  10. Grassl, P. and Jirasek, M. (2006), "Damage-plastic model for concrete failure", Int. J. Solid. Struct., 43(22-23), 7166-7196. https://doi.org/10.1016/j.ijsolstr.2006.06.032
  11. Grassl, P. and Rempling, R. (2007), "Influence of volumetric-deviatoric coupling on crack prediction in concrete fracture tests", Eng. Fract. Mech., 74(10), 1683-1693. https://doi.org/10.1016/j.engfracmech.2006.08.028
  12. Hassan, T., Lucier, G., Rizkalla, S. and Zia, P. (2007), "Modeling of L-shaped, precast, prestressed concrete spandrels", Precast/Prestressed Concrete Institute J., 52(2), 78-92.
  13. Hillerborg, A., Mooder, M. and Peterson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite element", Cement Concrete Res., 6(6), 773-792. https://doi.org/10.1016/0008-8846(76)90007-7
  14. Jirasek, M. and Grassl, P. (2008), "Evaluation of directional mesh bias in concrete fracture simulations using continuum damage models", Eng. Fract. Mech., 75(8), 1921-1943. https://doi.org/10.1016/j.engfracmech.2007.11.010
  15. Jirasek, M. and Marfia, S. (2005), "Non-local damage model based on displacement averaging", Int. J. Numer. Method. Eng., 63(1),77-102. https://doi.org/10.1002/nme.1262
  16. Kawakami, M. and Ito, T. (2003), "Nonlinear finite element analysis of prestressed concrete members using ADINA", Comput. Struct., 81, 727-734. https://doi.org/10.1016/S0045-7949(02)00486-8
  17. Kennedy, J.B. and Abdalla, H. (1992), "Static response of prestressed girders with openings", J. Struct. Eng., 118(2), 488-504. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:2(488)
  18. Kwak, H.G. and Filippou, F.C. (1990), "Finite element analysis of reinforced concrete structures under monotonic loads", Department of Civil Eng., Univ, of California, Berkeley.
  19. Lee, J. and Fenves, G.L. (1998), "A plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124, 882-900.
  20. Lee, J. and Fenves, G.L. (1998), "A plastic-damage concrete model for earthquake analysis of dams", Earthq. Eng. Struct. Dy., 27, 937-956. https://doi.org/10.1002/(SICI)1096-9845(199809)27:9<937::AID-EQE764>3.0.CO;2-5
  21. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solid. Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
  22. Lucier, G., Rizkalla, S., Zia, P. and Klein, G. (2007), "Precast concrete, L-shaped spandrels revisited: Fullscale tests", Precast/Prestressed Concrete Institute J., 52(2), 62-76.
  23. Malm, R. and Holmgren, J. (2008),"Cracking in deep beams owing to shear loading. Part 2: Non-linear analysis", Mag. Concrete Res., 60(5), 381-388. https://doi.org/10.1680/macr.2008.60.5.381
  24. Marzouk, H. and Chen, Z.W. (1995), "Fracture energy and tension properties of high-strength concrete", J. Mater. Civil Eng., 7(2), 108-116. https://doi.org/10.1061/(ASCE)0899-1561(1995)7:2(108)
  25. Mercan, B., Stolarski, H.K. and Schultz, A.E. (2010), "Finite element modeling of prestressed concrete spandrel beams", Eng. Struct., 32(9), 2804-2813. https://doi.org/10.1016/j.engstruct.2010.04.049
  26. Nayal, R. and Rasheed, H.A. (2006), "Tension stiffening model for concrete beams reinforced with steel and FRP bars", J. Mater. Civil Eng., 18(6), 831-841. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:6(831)
  27. Prinja, N.K. and Shepherd, D. (2005), "Simulating structural collapse of a PWR containment", Proceedings of the 17th International Conference on Structural Mechanics in Nuclear Engineering, 235, 2033-2043.
  28. Rabczuk, T. and Belytschko, T. (2006), "Application of particle methods to static fracture of reinforced concrete structures", Int. J. Fract., 137(1-4), 19-49. https://doi.org/10.1007/s10704-005-3075-z
  29. Riks, E. (1979), "An incremental approach to the solution of snapping and buckling problems", Int. J. Solid. Struct., 15, 529-551. https://doi.org/10.1016/0020-7683(79)90081-7
  30. SIMULIA (2008), ABAQUS Analysis User's Manual, Version 6.8. Dassault Systemes Corp., Providence, RI.
  31. Sun, J.S., Lee, K.H. and Lee, H.P. (2000), "Comparison of implicit and explicit finite element methods for dynamic problems", J. Mater. Process. Tech., 105, 110-118. https://doi.org/10.1016/S0924-0136(00)00580-X
  32. Thevendran, V., Chen, S., Shanmugam, N.E. and Richard Liew, J.Y. (1999), "Nonlinear analysis of steelconcrete composite beams curved in plan", Finite Elem. Anal. Des., 32, 125-139. https://doi.org/10.1016/S0168-874X(99)00010-4
  33. Su, C. and Xu, R. (2014), "Random vibration analysis of structures by a time-domain explicit formulation method", Struct. Eng. Mech., 52(2), 239-260. https://doi.org/10.12989/sem.2014.52.2.239
  34. Wagoner, R.H. and Chenot, J.L. (2005), Metal forming analysis, Cambridge University Press.