Study on Proton Radiation Resistance of 410 Martensitic Stainless Steels under 3 MeV Proton Irradiation

  • Lee, Jae-Woong ;
  • Surabhi, S. ;
  • Yoon, Soon-Gil ;
  • Ryu, Ho Jin ;
  • Park, Byong-Guk ;
  • Cho, Yeon-Ho ;
  • Jang, Yong-Tae ;
  • Jeong, Jong-Ryul
  • Received : 2016.03.16
  • Accepted : 2016.03.30
  • Published : 2016.06.30


In this study, we report on an investigation of proton radiation resistance of 410 martensitic stainless steels under 3 MeV proton with the doses ranging from $1.0{\times}10^{15}$ to $1.0{\times}10^{17}p/cm^2$ at the temperature 623 K. Vibrating sample magnetometer (VSM) and X-ray diffractometer (XRD) were used to study the variation of magnetic properties and structural damages by virtue of proton irradiation, respectively. VSM and XRD analysis revealed that the 410 martensitic stainless steels showed proton radiation resistance up to $10^{17}p/cm^2$. Proton energy degradation and flux attenuations in 410 stainless steels as a function of penetration depth were calculated by using Stopping and Range of Ions in Matter (SRIM) code. It suggested that the 410 stainless steels have the radiation resistance up to $5.2{\times}10^{-3}$ dpa which corresponds to neutron irradiation of $3.5{\times}10^{18}n/cm^2$. These results could be used to predict the maintenance period of SUS410 stainless steels in fission power plants.


martensitic steels;magnetization;ferromagnet;proton irradiation


  1. R. J. Kurtz, A. Alamo, E. Lucon, Q. Huang, S. Jitsukawa, A. Kimura, R. L. Klueh, G. R. Odette, C. Petersen, M. A. Sokolov, P. Spatig, and J.-W. Rensman, J. Nucl. Mater. 386, 411 (2009).
  2. K. Yin, S. Qiu, R. Tang, Q. Zhang, and L. Zhang, J. Supercrit. Fluids 50, 235 (2009).
  3. D. Squarer, T. Schulenberg, D. Struwe, Y. Oka, D. Bittermann, N. Aksan, C. Maraczy, R. Kyrki-Rajamaki, A. Souyri, and P. Dumaz, Nucl. Eng. Des. 221, 167 (2003).
  4. A. B. C, Yann de Carlan, Xavier Averty, Jean-Chrisophe Brachet, Jean-Luc Bertin, Frank Rozenblum, and Olivier Rabouille, J. ASTM Int. 2, JAI12354 (2005).
  5. Y. Z. Shen, S. H. Kim, H. D. Cho, C. H. Han, and W. S. Ryu, Nucl. Eng. Des. 239, 648 (2009).
  6. M. Noh, M. J. Gi, D. Kim, Y.-W. Park, J. Lee, and J. Kim, J. Magn. 20, 86 (2015).
  7. T. Ishida, S. Imayoshi, T. Yoritsune, H. Nunokawa, M. Ochiai, and Y. Ishizaka, J. Nucl. Sci. Technol. 38, 557 (2001).
  8. R. Schaeublin, D. Gelles, and M. Victoria, J. Nucl. Mater. 307, 197 (2002).
  9. S. Kim, S. Lee, J. Ko, J. Son, M. Kim, S. Kang, and J. Hong, Nature Nanotech. 7, 567 (2012).
  10. S. Kim, S. Lee, and J. Hong, ACS Nano 8, 4698 (2014).
  11. K. Yabuuchi, Y. Kuribayashi, S. Nogami, R. Kasada, and A. Hasegawa, J. Nucl. Mater. 446, 142 (2014).
  12. X. H. Li, J. Lei, G. G. Shu, and Q. M. Wan, Nucl. Instruments Methods Phys. Res. Sect. B 350, 14 (2015).
  13. R. E. Stoller, Effects of Radiation on Materials: 21st International Symposium, ASTM STP 1447, M. L. Grossbeck, T. R. Allen, R. G. Lott, and A. S. Kumar, Eds., ASTM International, West Conshohocken, PA (2003).

Cited by

  1. Hardness of AISI type 410 martensitic steels after high temperature irradiation via nanoindentation vol.23, pp.6, 2017,


Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP), National Research Foundation of Korea