DOI QR코드

DOI QR Code

Effect of Grain Size on the Tensile Properties of an Austenitic High-Manganese Steel

오스테나이트계 고망간강의 인장 특성에 미치는 결정립 크기의 영향

  • Received : 2016.04.12
  • Accepted : 2016.05.12
  • Published : 2016.06.27

Abstract

This paper presents a study of the tensile properties of austenitic high-manganese steel specimens with different grain sizes. Although the stacking fault energy, calculated using a modified thermodynamic model, slightly decreased with increasing grain size, it was found to vary in a range of $23.4mJ/m^2$ to $27.1mJ/m^2$. Room-temperature tensile test results indicated that the yield and tensile strengths increased; the ductility also improved as the grain size decreased. The increase in the yield and tensile strengths was primarily attributed to the occurrence of mechanical twinning, as well as to the grain refinement effect. On the other hand, the improvement of the ductility is because the formation of deformation-induced martensite is suppressed in the high-manganese steel specimen with small grain size during tensile testing. The deformation-induced martensite transformation resulting from the increased grain size can be explained by the decrease in stacking fault energy or in shear stress required to generate deformation-induced martensite transformation.

Keywords

austenitic;high-manganese steel;grain size;tensile properties;deformation-induced martensite transformation

References

  1. J. E. Jung, J. Park, J. S. Kim, J. B. Jeon, S. K. Kim and Y. W. Chang, Met. Mater. Int., 20, 27 (2014). https://doi.org/10.1007/s12540-014-1008-y
  2. J. S. Kim, J. B. Jeon, J. E. Jung, K. K. Um and Y. W. Chang, Met. Mater. Int., 20, 41 (2014). https://doi.org/10.1007/s12540-014-1010-4
  3. D. Jeong, T. Park, J. Lee and S. Kim, Met. Mater. Int., 21, 453 (2015). https://doi.org/10.1007/s12540-015-4397-7
  4. M. Jo, Y. M. Koo and S. K. Kwon, Met. Mater. Int., 21, 227 (2015). https://doi.org/10.1007/s12540-015-4320-2
  5. K. M. Rahman, V. A. Vorontsov and D. Dye, Acta Mater., 89, 247 (2015). https://doi.org/10.1016/j.actamat.2015.02.008
  6. M. Koyama, T. Lee, C. S. Lee and K. Tsuzaki, Mater. Des., 49, 234 (2013). https://doi.org/10.1016/j.matdes.2013.01.061
  7. I. Gutierrez-Urrutia and D. Raabe, Scr. Mater., 66, 992 (2012). https://doi.org/10.1016/j.scriptamat.2012.01.037
  8. D. B. Santos, A. A. Saleh, A. A. Gazder, A. Carman, D. M. Duarte,E. A. Ribeiro, B. M. Gonzalez and E. V. Pereloma, Mater. Sci. Eng., A, 528, 3545 (2011). https://doi.org/10.1016/j.msea.2011.01.052
  9. O. Bouaziz, S. Allain, C. P. Scott, P. Cugy and D. Barbier, Curr. Opin. Solid State Mater. Sci., 15, 141 (2011). https://doi.org/10.1016/j.cossms.2011.04.002
  10. S. Y. Jo, J. Han, J. H. Kang, S. Kang, S. Lee and Y. K. Lee, J. Alloys Compd., 627, 374 (2015). https://doi.org/10.1016/j.jallcom.2014.11.232
  11. G. Dini, R. Ueji and A. Najafizadeh, Mater. Sci. Forum, 654, 294 (2010).
  12. I. Gutierrez-Urrutia, S. Zaefferer and D. Raabe, Mater. Sci. Eng., A, 527, 3552 (2010). https://doi.org/10.1016/j.msea.2010.02.041
  13. R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura and K. Kunishige, Scr. Mater., 59, 963 (2008). https://doi.org/10.1016/j.scriptamat.2008.06.050
  14. S. Kang, J. G. Jung, M. Kang, W. Woo and Y. K. Lee, Mater. Sci. Eng., A, 652, 212 (2016). https://doi.org/10.1016/j.msea.2015.11.096
  15. G. Dini, A. Najafizadeh, S. M. Monir-Vaghefi and R. Ueji, J. Mater. Sci. Technol., 26, 181 (2010). https://doi.org/10.1016/S1005-0302(10)60030-8
  16. J. G. Sevillano, Scr. Mater., 59, 135 (2008). https://doi.org/10.1016/j.scriptamat.2008.02.052
  17. M. A. Meyers, O. Vöhringer and V. A. Lubarda, Acta Mater., 49, 4025 (2001). https://doi.org/10.1016/S1359-6454(01)00300-7
  18. E. El-Danaf, S. R. Kalidindi and R. D. Doherty, Metall. Mater. Trans. A, 30, 1223 (1999). https://doi.org/10.1007/s11661-999-0272-9
  19. H. Nakatsu, T. Miyata and S. Takaki, J. Jpn. Inst. Met., 60, 928 (1996). https://doi.org/10.2320/jinstmet1952.60.10_928
  20. G. B. Olson and M. Cohen, Metall. Trans. A, 7A, 1897 (1976).
  21. Y. K. Lee and C. S. Choi, Metall. Mater. Trans. A, 31A, 355 (2000).
  22. L. Li and T. Y. Hsu, Calphad, 21, 443 (1997). https://doi.org/10.1016/S0364-5916(97)00044-8
  23. S. Curtze, V. T. Kuokkala, A. Oikari, J. Talonen and H. Hanninen, Acta Mater., 59, 1068 (2011). https://doi.org/10.1016/j.actamat.2010.10.037
  24. S. Allain, J. P. Chateau, O. Bouaziz, S. Migot and N. Guelton, Mater. Sci. Eng. A, 387, 158 (2004).
  25. P. J. Ferreira and P. Mullner, Acta Mater., 46, 4479 (1998). https://doi.org/10.1016/S1359-6454(98)00155-4
  26. A. T. Dinsdale, Calphad, 15, 317 (1991). https://doi.org/10.1016/0364-5916(91)90030-N
  27. A. Dumay, J. P. Chateau, S. Allain, S. Migot and O. Bouaziz, Mater. Sci. Eng. A, 483, 184 (2008).
  28. K. Ishida and T. Nishizawa, Trans. Jpn. Inst. Metall., 15, 225 (1974). https://doi.org/10.2320/matertrans1960.15.225
  29. S. Allain, Ph.D. Thesis, INPL, Nancy (2004).
  30. I. A. Yakubtsov, A. Ariapour and D. D. Perovic, Acta Mater., 47, 1271 (1999). https://doi.org/10.1016/S1359-6454(98)00419-4
  31. P. H. Adler, G. B. Olson and W. S. Owen, Metall. Trans. A, 17A, 1725 (1986).
  32. J. D. Yoo, S. W. Hwang and K. T. Park, Mater. Sci. Eng. A, 508, 234 (2009). https://doi.org/10.1016/j.msea.2008.12.055
  33. G. Dini, A. Najafizadeh, R. Ueji and S. M. Monir-Vaghefi, Mater. Des., 31, 3395 (2010). https://doi.org/10.1016/j.matdes.2010.01.049
  34. X. Yuan, L. Chen, Y. Zhao, H. Di and F. Zhu, J. Mater. Process. Technol., 217, 278 (2015). https://doi.org/10.1016/j.jmatprotec.2014.11.027
  35. S. Wang, Z. Liu and G. Wang, Acta Metall. Sinica, 45, 1083 (2009).
  36. S. Takaki, H. Nakatsu and Y. Tokunaga, Mater. Trans., JIM, 34, 489 (1993). https://doi.org/10.2320/matertrans1989.34.489
  37. S. Takaki, T. Furuya and Y. Tokunaga, ISIJ Int., 30, 632 (1990). https://doi.org/10.2355/isijinternational.30.632
  38. M. Koyama, T. Sawaguchi and K. Tsuzaki, Metall. Mater. Trans. A, 43, 4063 (2012). https://doi.org/10.1007/s11661-012-1220-7

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)