DOI QR코드

DOI QR Code

Fabrication of Cu-30 vol% SiC Composites by Pressureless Sintering of Polycarbosilane Coated SiC and Cu Powder Mixtures

Polycarbosilane이 코팅된 SiC와 Cu 혼합분말의 상압소결에 의한 Cu-30 vol% SiC 복합재료의 제조

  • Received : 2016.05.11
  • Accepted : 2016.05.23
  • Published : 2016.06.27

Abstract

Cu-30 vol% SiC composites with relatively densified microstructure and a sound interface between the Cu and SiC phases were obtained by pressureless sintering of PCS-coated SiC and Cu powders. The coated SiC powders were prepared by thermal curing and pyrolysis of PCS. Thermal curing at $200^{\circ}C$ was performed to fabricate infusible materials prior to pyrolysis. The cured powders were heated treated up to $1600^{\circ}C$ for the pyrolysis process and for the formation of SiC crystals on the surface of the SiC powders. XRD analysis revealed that the main peaks corresponded to the ${\alpha}$-SiC phase; peaks for ${\beta}$-SiC were newly appeared. The formation of ${\beta}$-SiC is explained by the transformation of thermally-cured PCS on the surface of the initial ${\alpha}$-SiC powders. Using powder mixtures of coated SiC powder, hydrogen-reduced Cu-nitrate, and elemental Cu powders, Cu-SiC composites were fabricated by pressureless sintering at $1000^{\circ}C$. Microstructural observation for the sintered composites showed that the powder mixture of PCS-coated SiC and Cu exhibited a relatively dense and homogeneous microstructure. Conversely, large pores and separated interfaces between Cu and SiC were observed in the sintered composite using uncoated SiC powders. These results suggest that Cu-SiC composites with sound microstructure can be prepared using a PCS coated SiC powder mixture.

Keywords

Cu-SiC composites;polycarbosilane;pressureless sintering;microstructure

References

  1. C. Zweben, JOM, 50, 47 (1998). https://doi.org/10.1007/s11837-998-0128-6
  2. R. M. German, K. F. Hens and J. L. Johnson, Int. J. Powder Metall., 30, 205 (1994).
  3. C. Zweben, J. Adv. Mater., 39, 3 (2007).
  4. J.-M. Molina, M. Rhême, J. Carron and L. Weber, Scripta. Mater., 58, 393 (2008). https://doi.org/10.1016/j.scriptamat.2007.10.020
  5. K. Chu, C. Jia, X. Liang, H. Chen and H. Guo, Mater. Des., 30, 3497 (2009). https://doi.org/10.1016/j.matdes.2009.03.009
  6. G. Sundberg, P. Paul, C. Sung and T. Vasilos, J. Mater. Sci., 41, 485 (2006). https://doi.org/10.1007/s10853-005-2622-3
  7. G. W. Liu, M. L. Muolo, F. Valenza and A. Passerone, Ceram. Int., 36, 1177 (2010). https://doi.org/10.1016/j.ceramint.2010.01.001
  8. T. Schubert, B. Trindade, T. Weissgarber and B. Kieback, Mater. Sci. Eng. A, 475, 39 (2008). https://doi.org/10.1016/j.msea.2006.12.146
  9. J. Pelleg, M. Ruhr and M. Ganor, Mater. Sci. Eng. A, 212, 139 (1996). https://doi.org/10.1016/0921-5093(96)10191-X
  10. S.-R. Bang, D.-M. Yim, D.-H. Riu and S.-T. Oh, Arch. Metall. Mater., 60, 1261 (2015).
  11. H. Q. Ly, R. Taylor, R. J. Day and F. Heatley, J. Mater. Sci., 36, 4037 (2001). https://doi.org/10.1023/A:1017942826657
  12. D.-G. Shin, E.-B. Kong, K.-Y. Cho, W.-T. Kwon, Y. Kim, S.-R. Kim, J.-S. Hong and D.-H. Riu, J. Korean Ceram. Soc., 50, 301 (2013) (in Korean). https://doi.org/10.4191/kcers.2013.50.4.301
  13. D.-G. Shin, E.-B. Kong, D.-H. Riu, Y. Kim, H.-S. Park and H.-E. Kim, J. Korean Ceram. Soc., 44, 393 (2007) (in Korean). https://doi.org/10.4191/KCERS.2007.44.7.393
  14. S. Matthews, M. J. Edirisinghe and M. J. Folkes, Ceram. Int., 25, 49 (1999). https://doi.org/10.1016/S0272-8842(97)00088-6
  15. F. Cao, X. Li, P. Peng, C. Feng, J. Wang and D.-P. Kim, J. Mater. Chem., 12, 606 (2002). https://doi.org/10.1039/b106868g
  16. S.-R. Bang and S.-T. Oh, J. Korean Powder Metall. Inst., 21, 191 (2014) (in Korean). https://doi.org/10.4150/KPMI.2014.21.3.191

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)