Study on GZO Thin Films as Insulator, Semiconductor and Conductor Depending on Annealing Temperature

열처리 온도에 따라서 절연체, 반도체, 전도체의 특성을 갖는 GZO 박막의 특성연구

Oh, Teresa

  • Received : 2016.02.04
  • Accepted : 2016.05.24
  • Published : 2016.06.27


To observe the bonding structure and electrical characteristics of a GZO oxide semiconductor, GZO was deposited on ITO glasses and annealed at various temperatures. GZO was found to change from crystal to amorphous with increasing of the annealing temperatures; GZO annealed at $200^{\circ}C$ came to have an amorphous structure that depended on the decrement of the oxygen vacancies; increase the mobility due to the induction of diffusion currents occurred because of an increment of the depletion layer. The increasing of the annealing temperature caused a reduction of the carrier concentration and an increase of the bonding energy and the depletion layer; therefore, the large potential barrier increased the diffusion current dna the Hall mobility. However, annealing temperatures over $200^{\circ}C$ promoted crystallinity by the defects without oxygen vacancies, and then degraded the depletion layer, which became an Ohmic contact without a potential barrier. So the current increased because of the absence of a potential barrier.


GZO;amorphous;XRD;PL spectra;capacitance;chemical shift


  1. D. S. Lee, D. J. Kim and H. J. Kim, Korean J. Mater. Res., 25, 238 (2015).
  2. JOHN G. SIMMONS, Phys. Rev., 155, 657 (1967).
  3. T. Oh and C. H. Kim, JNN. 16, 2096 (2016).
  4. W. T. Chen, S. Y. Lo, S. C. Kao, H. W. Zan, C. C. Tsai, J. H. Lin, C. H. Fang, and C. C. Lee, IEEE Electron. Dev. Lett., 32, 1552 (2011).
  5. S. W. Tsao, T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Chen, C. T. Tsai, Y. J. Kuo, Y. C. Chen and W. C. Wub, Solid-State Electron., 54, 1497 (2010).
  6. G. Kenugapal and S. J. Kim, Curr. Appl. Phys., 11, S381 (2011).
  7. J. S. Lee, Y. J. Kwack and W. S. Choi, J. Korean Phys. Soc., 59, 3305 (2011).
  8. T. Oh, EML. 11, 853 (2015).
  9. J. Maserjian, J. Vac. Sci. Technol. A, 11, 996 (1974).
  10. K. Nomura, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, Appl. Phys. Lett., 93, 192107 (2008).
  11. O. Mitrofanov and M. Mantra, J. Appl. Phys., 95, 6414 (2004).
  12. T. Oh, Korean J. Mater. Res., 25, 1149 (2015).
  13. M. E. Lopes, H. L. Gomes, M. C. R. Medeiros, P. Barquinha, L. Pereira, E. Fortunato, R. Martins and I. Ferreira, Appl. Phys. Lett., 95, 063502 (2009).
  14. N. Zhang, Ke Yu, Q. Li, Z. Q. Zhu and Q. Wan, J. Appl. Phys., 103, 104305 (2008).
  15. J. Heo, H. J. Kim, J. H. Han and J. W. Shon, Thin Solid Films, 515, 5035 (2007).
  16. D. W. Jeong, J. J. Kim and J. O Lee, J. Korean Phys. Soc., 59, 3133 (2011).
  17. T. Oh, Korean J. Mater. Res., 25, 347 (2015).
  18. S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa and M. Kawasaki1, Appl. Phys. Lett., 93, 123309 (2008).
  19. D. Cha, S. Lee, J. Jung and I. An, J. Korean Phys. Soc., 56, 846 (2010).