DOI QR코드

DOI QR Code

Ginsenoside Rg1 Improves In vitro-produced Embryo Quality by Increasing Glucose Uptake in Porcine Blastocysts

  • Kim, Seung-Hun (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University) ;
  • Choi, Kwang-Hwan (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University) ;
  • Lee, Dong-Kyung (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University) ;
  • Oh, Jong-Nam (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University) ;
  • Hwang, Jae Yeon (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University) ;
  • Park, Chi-Hun (Designed Animal and Transplantation Research Institute, Institute of Green Bio Science and Technology, Seoul National University) ;
  • Lee, Chang-Kyu (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University)
  • Received : 2015.08.15
  • Accepted : 2015.10.16
  • Published : 2016.08.01

Abstract

Ginsenoside Rg1 is a natural compound with various efficacies and functions. It has beneficial effects on aging, diabetes, and immunity, as well as antioxidant and proliferative functions. However, its effect on porcine embryo development remains unknown. We investigated the effect of ginsenoside Rg1 on the in vitro development of preimplantation porcine embryos after parthenogenetic activation in high-oxygen conditions. Ginsenoside treatment did not affect cleavage or blastocyst formation rates, but did increase the total cell number and reduced the rate of apoptosis. In addition, it had no effect on the expression of four apoptosis-related genes (Bcl-2 homologous antagonist/killer, B-cell lymphoma-extra large, Caspase 3, and tumor protein p53) or two metabolism-related genes (mechanistic target of rapamycin, carnitine palmitoyltransferase 1B), but increased the expression of Glucose transporter 1 (GLUT1), indicating that it may increase glucose uptake. In summary, treatment with the appropriate concentration of ginsenoside Rg1 ($20{\mu}g/mL$) can increase glucose uptake, thereby improving the quality of embryos grown in high-oxygen conditions.

Keywords

Ginsenoside Rg1;In vitro Culture;Metabolism;Embryo;Pig

Acknowledgement

Supported by : Rural Development Administration

References

  1. Conaghan, J., A. H. Handyside, R. M. L. Winston, and H. J. Leese. 1993. Effects of pyruvate and glucose on the development of human preimplantation embryos in vitro. J. Reprod. Fertil. 99:87-95. https://doi.org/10.1530/jrf.0.0990087
  2. Brison, D. R. and H. J. Leese. 1991. Energy metabolism in late preimplantation rat embryos. J. Reprod. Fertil. 93:245-251. https://doi.org/10.1530/jrf.0.0930245
  3. Chen, X. C., Y. G. Zhu, L. A. Zhu, C. Huang, Y. Chen, L. M. Chen, F. Fang, Y. C. Zhou, and C. H. Zhao. 2003. Ginsenoside Rg1 attenuates dopamine-induced apoptosis in PC12 cells by suppressing oxidative stress. Eur. J. Pharmacol. 473:1-7. https://doi.org/10.1016/S0014-2999(03)01945-9
  4. Cory, S. and J. M. Adams. 2002. The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2:647-656. https://doi.org/10.1038/nrc883
  5. Deng, H. L. and J. T. Zhang. 1991. Anti-lipid peroxilative effect of ginsenoside Rb1 and Rg1. Chin. Med. J. 104:395-398.
  6. Elmore, S. 2007. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35:495-516. https://doi.org/10.1080/01926230701320337
  7. Fridman, J. S. and S. W. Lowe. 2003. Control of apoptosis by p53. Oncogene 22:9030-9040. https://doi.org/10.1038/sj.onc.1207116
  8. Gentile, L., M. Monti, V. Sebastiano, V. Merico, R. Nicolai, M. Calvani, S. Garagna, C. A. Redi, and M. Zuccotti. 2004. Single-cell quantitative RT-PCR analysis of Cpt1b and Cpt2 gene expression in mouse antral oocytes and in preimplantation embryos. Cytogenet. Genome Res. 105:215-221. https://doi.org/10.1159/000078191
  9. Goto, Y., Y. Noda, T. Mori, and M. Nakano. 1993. Increased generation of reactive oxygen species in embryos cultured in vitro. Free Radic. Biol. Med. 15:69-75. https://doi.org/10.1016/0891-5849(93)90126-F
  10. Guerin, P., S. El Mouatassim, and Y. Menezo. 2001. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 7:175-189. https://doi.org/10.1093/humupd/7.2.175
  11. Hagen, D. R., R. S. Prather, M. M. Sims, and N. L. First. 1991. Development of one-cell porcine embryos to the blastocyst stage in simple media. J. Anim. Sci. 69:1147-1150. https://doi.org/10.2527/1991.6931147x
  12. Kenarova, B., H. Neychev, C. Hadjiivanova, and V. D. Petkov. 1990. Immunomodulating activity of ginsenoside Rg1 from Panax ginseng. Jpn. J. Pharmacol. 54:447-454. https://doi.org/10.1254/jjp.54.447
  13. Kitagawa, Y., K. Suzuki, A. Yoneda, and T. Watanabe. 2004. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology 62:1186-1197. https://doi.org/10.1016/j.theriogenology.2004.01.011
  14. Kumar, P., A. Verma, M. Kumar, S. De, R. Kumar, and T. K. Datta. 2015. Expression pattern of glucose metabolism genes correlate with development rate of buffalo oocytes and embryos in vitro under low oxygen condition. J. Assist. Reprod. Genet. 32:471-478. https://doi.org/10.1007/s10815-014-0418-6
  15. Land, S. C., C. L. Scott, and D. Walker. 2014. mTOR signalling, embryogenesis and the control of lung development. Semin. Cell Dev. Biol. 36:68-78. https://doi.org/10.1016/j.semcdb.2014.09.023
  16. Lane, M. and D. K. Gardner. 1996. Fertilization and early embryology: Selection of viable mouse blastocysts prior to transfer using a metabolic criterion. Hum. Reprod. 11:1975-1978. https://doi.org/10.1093/oxfordjournals.humrep.a019527
  17. Lee, K., C. Wang, J. M. Chaille, and Z. Machaty. 2010. Effect of resveratrol on the development of porcine embryos produced in vitro. J. Reprod. Dev. 56:330-335. https://doi.org/10.1262/jrd.09-174K
  18. Lee, M. S., J. T. Hwang, S. H. Kim, S. Yoon, M. S. Kim, H. J. Yang, and D. Y. Kwon. 2010. Ginsenoside Rc, an active component of Panax ginseng, stimulates glucose uptake in C2C12 myotubes through an AMPK-dependent mechanism. J. Ethnopharmacol. 127:771-776. https://doi.org/10.1016/j.jep.2009.11.022
  19. Liu, P., H. Yin, Y. Xu, Z. Zhang, K. Chen, and Y. Li. 2006. Effects of ginsenoside Rg1 on postimplantation rat and mouse embryos cultured in vitro. Toxicol. In Vitro 20:234-238. https://doi.org/10.1016/j.tiv.2005.06.029
  20. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  21. Lu, J. M., Q. Yao, and C. Chen. 2009. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr. Vasc. Pharmacol. 7:293-302. https://doi.org/10.2174/157016109788340767
  22. Martin, K. L. and H. J. Leese. 1995. Role of glucose in mouse preimplantation embryo development. Mol. Reprod. Dev. 40:436-443. https://doi.org/10.1002/mrd.1080400407
  23. Mateusen, B., A. Van Soom, D. G. Maes, I. Donnay, L. Duchateau, and A. S. Lequarre. 2005. Porcine embryo development and fragmentation and their relation to apoptotic markers: a cinematographic and confocal laser scanning microscopic study. Reprod. 129:443-452. https://doi.org/10.1530/rep.1.00533
  24. Menezo, Y. J., J. F. Guerin, and J. C. Czyba. 1990. Improvement of human early embryo development in vitro by coculture on monolayers of Vero cells. Biol. Reprod. 42:301-306. https://doi.org/10.1095/biolreprod42.2.301
  25. Mook-Jung, I., H. S. Hong, J. H. Boo, K. H. Lee, S. H. Yun, M. Y. Cheong, I. Joo, K. Huh, and M. W. Jung. 2001. Ginsenoside Rb1 and Rg1 improve spatial learning and increase hippocampal synaptophysin level in mice. J. Neurosci. Res. 63:509-515. https://doi.org/10.1002/jnr.1045
  26. Morita, Y., O. Tsutsumi, I. Hosoya, Y. Taketani, Y. Oka, and T. Kato. 1992. Expression and possible function of glucose transporter protein GLUT1 during preimplantation mouse development from oocytes to blastocysts. Biochem. Biophys. Res. Commun. 188:8-15. https://doi.org/10.1016/0006-291X(92)92342-U
  27. Shang, W., Y. Yang, L. Zhou, B. Jiang, H. Jin, and M. Chen. 2008. Ginsenoside Rb1 stimulates glucose uptake through insulin-like signaling pathway in 3T3-L1 adipocytes. J. Endocrinol. 198:561-569. https://doi.org/10.1677/JOE-08-0104
  28. Shi, A. W., X. B. Wang, F. X. Lu, M. M. Zhu, X. Q. Kong, and K. J. Cao. 2009. Ginsenoside Rg1 promotes endothelial progenitor cell migration and proliferation. Acta Pharmacol. Sin. 30:299-306. https://doi.org/10.1038/aps.2009.6
  29. Stennicke, H. R. and G. S. Salvesen. 1998. Properties of the caspases. Biochim. Biophys. Acta 1387:17-31. https://doi.org/10.1016/S0167-4838(98)00133-2
  30. Xie, J. T., S. McHendale, and C. S. Yuan. 2005. Ginseng and diabetes. Am. J. Chin. Med. 33:397-404. https://doi.org/10.1142/S0192415X05003004