DOI QR코드

DOI QR Code

Rapamycin Influences the Efficiency of In vitro Fertilization and Development in the Mouse: A Role for Autophagic Activation

  • Lee, Geun-Kyung (Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University) ;
  • Shin, Hyejin (Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University) ;
  • Lim, Hyunjung Jade (Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University)
  • Received : 2015.09.11
  • Accepted : 2015.10.07
  • Published : 2016.08.01

Abstract

The mammalian target of rapamycin (mTOR) regulates cellular processes such as cell growth, metabolism, transcription, translation, and autophagy. Rapamycin is a selective inhibitor of mTOR, and induces autophagy in various systems. Autophagy contributes to clearance and recycling of macromolecules and organelles in response to stress. We previously reported that vitrified-warmed mouse oocytes show acute increases in autophagy during warming, and suggested that it is a natural response to cold stress. In this follow-up study, we examined whether the modulation of autophagy influences survival, fertilization, and developmental rates of vitrified-warmed mouse oocytes. We used rapamycin to enhance autophagy in metaphase II (MII) oocytes before and after vitrification. The oocytes were then subjected to in vitro fertilization (IVF). The fertilization and developmental rates of vitrified-warmed oocytes after rapamycin treatment were significantly lower than those for control groups. Modulation of autophagy with rapamycin treatment shows that rapamycin-induced autophagy exerts a negative influence on fertilization and development of vitrified-warmed oocytes.

Keywords

Vitrification;Mouse;Oocyte;Rapamycin;Development

Acknowledgement

Supported by : Ministry of Health & Welfare

References

  1. Adastra, K. L., M. M. Chi, J. K. Riley, and K. H. Moley. 2011. A differential autophagic response to hyperglycemia in the developing murine embryo. Reproduction 141:607-615. https://doi.org/10.1530/REP-10-0265
  2. Bang, S., H. Shin, H. Song, C. S. Suh, and H. J. Lim. 2014. Autophagic activation in vitrified-warmed mouse oocytes. Reproduction 148:11-19. https://doi.org/10.1530/REP-14-0036
  3. Boya, P., F. Reggiori, and P. Codogno. 2013. Emerging regulation and functions of autophagy. Nat. Cell. Biol. 15:713-720. https://doi.org/10.1038/ncb2788
  4. Castedo, M., K. F. Ferri, and G. Kroemer. 2002. Mammalian target of rapamycin (mTOR): pro- and anti-apoptotic. Cell. Death. Differ. 9:99-100. https://doi.org/10.1038/sj.cdd.4400978
  5. Cha, S. K., B. Y. Kim, M. K. Kim, Y. S. Kim, W. S. Lee, T. K. Yoon, and D. R. Lee. 2011. Effects of various combinations of cryoprotectants and cooling speed on the survival and further development of mouse oocytes after vitrification. Clin. Exp. Reprod. Med. 38:24-30. https://doi.org/10.5653/cerm.2011.38.1.24
  6. Chiang, G. G. and R. T. Abraham. 2005. Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J. Biol. Chem. 280:25485-25490. https://doi.org/10.1074/jbc.M501707200
  7. Choi, S., H. Shin, H. Song, and H. J. Lim. 2014. Suppression of autophagic activation in the mouse uterus by estrogen and progesterone. J. Endocrinol. 221:39-50. https://doi.org/10.1530/JOE-13-0449
  8. Gualtieri, R., V. Mollo, V. Barbato, I. Fiorentino, M. Iaccarino, and R. Talevi. 2011. Ultrastructure and intracellular calcium response during activation in vitrified and slow-frozen human oocytes. Hum. Reprod. 26:2452-2460. https://doi.org/10.1093/humrep/der210
  9. Heitman, J., N. R. Movva, and M. N. Hall. 1991. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905-909. https://doi.org/10.1126/science.1715094
  10. Jo, J. W., B. C. Jee, J. R. Lee, and C. S. Suh. 2011. Effect of antifreeze protein supplementation in vitrification medium on mouse oocyte developmental competence. Fertil. Steril. 96:1239-1245. https://doi.org/10.1016/j.fertnstert.2011.08.023
  11. Kapahi, P., D. Chen, A. N. Rogers, S. D. Katewa, P. W. Li, and E. L. Thomas, and L. Kockel. 2010. With TOR, less is more: A key role for the conserved nutrient-sensing TOR pathway in aging. Cell. Metab. 11:453-465. https://doi.org/10.1016/j.cmet.2010.05.001
  12. Klionsky, D. J., F. C. Abdalla, H. Abeliovich, R. T. Abraham, A. Acevedo-Arozena, and K. Adeli, et al. 2012. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445-544. https://doi.org/10.4161/auto.19496
  13. Kogasaka, Y., Y. Hoshino, Y. Hiradate, K. Tanemura, and E. Sato. 2013. Distribution and association of mTOR with its cofactors, raptor and rictor, in cumulus cells and oocytes during meiotic maturation in mice. Mol. Reprod. Dev. 80:334-48. https://doi.org/10.1002/mrd.22166
  14. Lee, J. E., H. A. Oh, H. Song, J. H. Jun, C. R. Roh, H. Xie, S. K. Dey, and H. J. Lim. 2011a. Autophagy regulates embryonic survival during delayed implantation. Endocrinology 152:2067-2075. https://doi.org/10.1210/en.2010-1456
  15. Lee, S. E., K. C. Hwang, S. C. Sun, Y. N. Xu, and N. H. Kim. 2011b. Modulation of autophagy influences development and apoptosis in mouse embryos developing in vitro. Mol. Reprod. Dev. 78:498-509. https://doi.org/10.1002/mrd.21331
  16. Lee, S. E., S. C. Sun, H. Y. Choi, S. J. Uhm, and N. H. Kim. 2012. mTOR is required for asymmetric division through small GTPases in mouse oocytes. Mol. Reprod. Dev. 79:356-366. https://doi.org/10.1002/mrd.22035
  17. Lim, H. J. and H. Song. 2014. Evolving tales of autophagy in early reproductive events. Int. J. Dev. Biol. 58:183-187. https://doi.org/10.1387/ijdb.130337hl
  18. Martinez-Burgos, M., L. Herrero, D. Megias, R. Salvanes, M. C. Montoya, A. C. Cobo, and Juan A. Garcia-Velasco. 2011. Vitrification versus slow freezing of oocytes: Effects on morphologic appearance, meiotic spindle configuration, and DNA damage. Fertil. Steril. 95:374-377. https://doi.org/10.1016/j.fertnstert.2010.07.1089
  19. Mayer, S., C. Wrenzycki, and W. Tomek. 2014. Inactivation of mTor arrests bovine oocytes in the metaphase-I stage, despite reversible inhibition of 4E-BP1 phosphorylation. Mol. Reprod. Dev. 81:363-375. https://doi.org/10.1002/mrd.22305
  20. Mizushima, N., B. Levine, A. M. Cuervo, and D. J. Klionsky. 2008. Autophagy fights disease through cellular self-digestion. Nature 451:1069-1075. https://doi.org/10.1038/nature06639
  21. Mizushima, N., A. Yamamoto, M. Matsui, T. Yoshimori, and Y. Ohsumi. 2004. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell. 15:1101-1111. https://doi.org/10.1091/mbc.e03-09-0704
  22. Neufeld, T. P. 2010. TOR-dependent control of autophagy: Biting the hand that feeds. Curr. Opin. Cell. Biol. 22:157-168. https://doi.org/10.1016/j.ceb.2009.11.005
  23. Sancak, Y., T. R. Peterson, Y. D. Shaul, R. A. Lindquist, C. C. Thoreen, L. Bar-Peled, and David M. Sabatini. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496-1501. https://doi.org/10.1126/science.1157535
  24. Saragusty, J. and A. Arav. 2011. Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction 141:1-19. https://doi.org/10.1530/REP-10-0236
  25. Singh, R. and A. M. Cuervo. 2011. Autophagy in the cellular energetic balance. Cell. Metab. 13:495-504. https://doi.org/10.1016/j.cmet.2011.04.004
  26. Song, B. S., J. S. Kim, Y. H. Kim, B. W. Sim, S. B. Yoon, and J. J. Cha, S.-A Choi, H.-J. Yang, S.-E. Mun, Y.-H. Park, K.-J. Jeong, J.-W. Huh, S.-R. Lee, S.-H. Kim, S.-U. Kim, and K.-T. Chang. 2014. Induction of autophagy during in vitro maturation improves the nuclear and cytoplasmic maturation of porcine oocytes. Reprod. Fertil. Dev. 26:974-981. https://doi.org/10.1071/RD13106
  27. Susor, A., D. Jansova, R. Cerna, A. Danylevska, M. Anger, T. Toralova, R. Malik, J. Supolikova, M. S. Cook, J. S. Oh, and M. Kubelka. 2015. Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR-eIF4F pathway. Nat. Commun. 6:6078. https://doi.org/10.1038/ncomms7078
  28. Tsukamoto, S., T. Hara, A. Yamamoto, S. Kito, N. Minami, T. Kubota, K. Sato, and T. Kokubo. 2014. Fluorescence-based visualization of autophagic activity predicts mouse embryo viability. Sci. Rep. 4:4533.
  29. Tsukamoto, S., A. Kuma, M. Murakami, C. Kishi, A. Yamamoto, and N. Mizushima. 2008. Autophagy is essential for preimplantation development of mouse embryos. Science 321:117-20. https://doi.org/10.1126/science.1154822
  30. Yamamoto, A., N. Mizushima, and S. Tsukamoto. 2014. Fertilization-induced autophagy in mouse embryos is independent of mTORC1. Biol. Reprod. 91:7. https://doi.org/10.1095/biolreprod.113.115816
  31. Yang, Z. and D. J. Klionsky. 2010. Eaten alive: A history of macroautophagy. Nat. Cell. Biol. 12:814-822. https://doi.org/10.1038/ncb0910-814
  32. Yu, L., C. K. McPhee, L. Zheng, G. A. Mardones, Y. Rong, J. Peng, N. Mi, Y. Zhao, Z. Liu, F. Wan, D. W. Hailey, V. Oorschot, J. Klumperman, E. H. Baehrecke, and M. J. Lenardo. 2010. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:942-946. https://doi.org/10.1038/nature09076

Cited by

  1. Influence of Maternal Aging on Mitochondrial Heterogeneity, Inheritance, and Function in Oocytes and Preimplantation Embryos vol.9, pp.5, 2018, https://doi.org/10.3390/genes9050265