DOI QR코드

DOI QR Code

Combined Removal of n-heptane and CO using Plasma-catalytic Process

플라즈마/촉매 공정을 이용한 n-헵테인과 일산화탄소 동시제거

Lee, Sang Baek;Jo, Jin Oh;Mok, Young Sun
이상백;조진오;목영선

  • Received : 2015.10.14
  • Accepted : 2016.04.07
  • Published : 2016.04.30

Abstract

Combined removal of n-heptane and carbon monoxide (CO) using a plasma-catalytic process was investigated. The performance of the plasma-catalytic process was compared with that of the catalyst-alone process to characterize the decomposition of n-heptane and CO with the operation parameters such as the type of catalyst, reaction temperature, and discharge power. From several sets of experiments, it was found that the decomposition efficiency of n-heptane mainly depended on the specific input energy rather than the reactor temperature, whereas the oxidation of CO on both the energy density and the reaction temperature. The results conducted over several metal oxide catalysts exhibited that the decomposition efficiency of n-heptane was in the order: $Pd/{\gamma}-Al_2O_3$ > $Ru/{\gamma}-Al_2O_3{\approx}Ag/{\gamma}-Al_2O_3$. Especially, $Pd/{\gamma}-Al_2O_3$ catalyst did hardly generate CO as a byproduct during the decomposition of n-heptane under an appropriate condition, revealing $CO_2$ selectivity of nearly 100%. The CO oxidation efficiency was largely affected by the type of catalyst ($Pd/{\gamma}-Al_2O_3$ > $Ru/{\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$). At temperatures below $180^{\circ}C$, the plasma-catalytic process was more effective in the oxidation of CO, while above $180^{\circ}C$, the catalytic process resulted in slightly higher CO oxidation efficiency.

Keywords

plasma;catalyst;n-heptane;carbon monoxide;palladium

References

  1. Larsson, P.O., Andersson, A., Wallenberg, L.R., and Svensson, B., "Combustion of CO and Toluene; Characterisation of Copper Oxide Supported on Titania and Activity Comparisons with Supported Cobalt, Iron, and Manganese Oxide", J. catal., 163, 279-293, (1996) https://doi.org/10.1006/jcat.1996.0329
  2. Sano, T., Negishi, N., Sakai, E., and Matsuzawa, S., "Contributions of Photocatalytic/Catalytic Activities of $TiO_2$ and ${\gamma}-Al_2O_3$ in Nonthermal Plasma on Oxidation of Acetaldehyde and CO", J. Mol. Catal. A: Chem., 245, 235-241, (2006) https://doi.org/10.1016/j.molcata.2005.10.002
  3. Mista, W. and Kacprzyk, R., "Decomposition of Toluene Using Non-thermal Plasma Reactor at Room Temperature", Catal. Today, 137, 345-349, (2008) https://doi.org/10.1016/j.cattod.2008.02.009
  4. Li, Y., Fan, Z., Shi, J., Liu, Z., and Shangguan, W., "Post Plasma-Catalysis for VOCs Degradation over Different Phase Structure $MnO_2$ Catalysts", Chem. Eng. J., 241, 251-258, (2014) https://doi.org/10.1016/j.cej.2013.12.036
  5. Durme, J.V., Dewulf, J., Leys, C., and Langenhove, H.V., "Combining Non-thermal Plasma with Heterogeneous Catalysis in Waste Gas Treatment: A Review", Appl. Catal. B: Environ., 78, 324-333, (2008) https://doi.org/10.1016/j.apcatb.2007.09.035
  6. Kim, H.H., Ogata, A., and Futamura, S., "Oxygen Partial Pressure-Dependent Behavior of Various Catalysts for the Total Oxidation of VOCs Using Cycled System of Adsorption and Oxygen Plasma", Appl. Catal. B: Environ., 79, 356-367, (2008) https://doi.org/10.1016/j.apcatb.2007.10.038
  7. Huang, H. and Ye, D., "Combination of Photocatalysis Downstream the Non-thermal Plasma Reactor for Oxidation of Gas-Phase Toluene", J. Hazard. Mater., 171, 535-541, (2009) https://doi.org/10.1016/j.jhazmat.2009.06.033
  8. Dang, X., Huang, J., Cao, L., and Zhou, Y., "Plasma-Catalytic Oxidation of Adsorbed Toluene with Gas Circulation", Catal. Commun., 40, 116-119, (2013) https://doi.org/10.1016/j.catcom.2013.06.025
  9. Gandhi, M.S., Ananth, A., Mok, Y.S., Song J.-I., and Park, K.-H., "Time Dependence of Ethylene Decomposition and Byproducts Formation in a Continuous Flow Dielectric-Packed Plasma Reactor", Chemosphere, 91, 685-691, (2013) https://doi.org/10.1016/j.chemosphere.2013.01.060
  10. Trinh, Q.H., Lee, S.B., and Mok, Y.S., "Removal of Ethylene from Air Stream by Adsorption and Plasma-Catalytic Oxidation Using Silver-Based Bimetallic Catalysts Supported on Zeolite", J. Hazard. Mater., 285, 525-534, (2015) https://doi.org/10.1016/j.jhazmat.2014.12.019
  11. Li, Y., Fan, Z., Shi, J., Liu, Z., Zhou, J., and Shangguan, W., "Removal of Volatile Organic Compounds (VOCs) at Room Temperature Using Dielectric Barrier Discharge and Plasma-Catalysis", Plasma Chem. Plasma Process., 34, 801-810, (2014) https://doi.org/10.1007/s11090-014-9535-3
  12. Karuppiah, J., Reddy, E.L., Reddy, P.M.K., Ramaraju, B., Karvembu, R., and Subrahmanyam, C., "Abatement of Mixture of Volatile Organic Compounds (VOCs) in a Catalytic Non-thermal Plasma Reactor", J. Hazard. Mater., 237-238, 283-289, (2012) https://doi.org/10.1016/j.jhazmat.2012.08.040
  13. Klett, C., Duten, X., Tieng, S., Touchard, S., Jestin, P., Hassouni, K., and Vega-Gonzalez, A., "Acetaldehyde Removal Using an Atmospheric Non-thermal Plasma Combined with a Packed Bed: Role of the Adsorption Process", J. Hazard. Mater., 279, 356-364, (2014) https://doi.org/10.1016/j.jhazmat.2014.07.014
  14. Kim, H.H., Kim, J.H., and Ogata, A., "Adsorption and Oxygen Plasma-Driven Catalysis for Total Oxidation of VOCs", Int. J. Plasma Environ. Sci. Technol., 2, 106-112, (2008)
  15. Zhu, X., Gao, X., Yu, X., Zheng, C., and Tu, X., "Catalyst Screening for Acetone Removal in a Single-stage Plasma-Catalysis System", Catal. Today, 256, 108-114, (2015) https://doi.org/10.1016/j.cattod.2015.01.028
  16. Ozil, F., Tschamber, V., Haas, F., and Trouve, G., "Efficiency of Catalytic Processes for the Reduction of CO and VOC Emissions from Wood Combustion in Domestic Fireplaces", Fuel Process. Technol., 90, 1053-1061, (2009) https://doi.org/10.1016/j.fuproc.2009.03.019
  17. Santos, V.P., Carabineiro, S.A.C., Tavares, P.B., Pereira, M.F.R., Orfao, J.J.M., and Figueiredo, J.L., "Oxidation of CO, Ethanol and Toluene over $TiO_2$ Supported Noble Metal Catalysts", Appl. Catal. B: Environ., 99, 198-205, (2010) https://doi.org/10.1016/j.apcatb.2010.06.020
  18. Heo, I., Wiebenga, M.H., Gaudet, J.R., Nam, I.-S., Li, W., and Kim, C.H., "Ultra Low Temperature CO and HC Oxidation over Cu-Based Mixed Oxides for Future Automotive Applications", Appl. Catal. B: Environ., 160-161, 365-373, (2014) https://doi.org/10.1016/j.apcatb.2014.05.045
  19. Magureanu, M., Mandache, N.B., Parvulescu, V.I., Subrahmanyam, C., Renken, A., and Kiwi-Minsker, L., "Improved Performance of Non-thermal Plasma Reactor During Decomposition of Trichloroethylene: Optimization of the Reactor Geometry and Introduction of Catalytic Electrode", Appl. Catal. B: Environ., 74, 270-277, (2007) https://doi.org/10.1016/j.apcatb.2007.02.019
  20. Martiez-Huerta, M.V., Gao, X., Tian, H., Wachs, I.E., Fierro, J.L.G., and Banares, M.A., "Oxidative Dehydrogenation of Ethane to Ethylene over Alumina-Supported Vanadium Oxide Catalysts: Relationship Between Molecular Structures and Chemical Reactivity", Catal. Today, 118, 279-287, (2006) https://doi.org/10.1016/j.cattod.2006.07.034
  21. Mok, Y.S., Lee, H.W., Hyun, Y.-J., Ham, S.W., Cho, M.H., and Nam, I.-S., "Influences of Packing Materials, Applied Voltage, Gas Composition and Voltage Polarity on the Decomposition of Toluene and the Power Delivery in a Dielectric Barrier Plasma Reactor", HWAHAK KONGHAK, 40, 121-127, (2002)
  22. Wagnera, H.E., Brandenburga, R., Kozlovb, K.V., Sonnenfeldc, A., Michela, P., and Behnke, J.F., "The Barrier Discharge: Basic Properties and Applications to Surface Treatment", Vacuum, 71, 417-436, (2003) https://doi.org/10.1016/S0042-207X(02)00765-0
  23. Jarrige, J. and Vervisch, P., "Plasma-Enhanced Catalysis of Propane and Isopropyl Alcohol at Ambient Temperature on a $MnO_2$-Based Catalyst", Appl. Catal. B: Environ., 90, 74-82, (2009) https://doi.org/10.1016/j.apcatb.2009.02.015
  24. Sudhakaran, M.S.P., Jo, J.O., Trinh, Q.H., and Mok, Y.S., "Characteristics of Packed-bed Plasma Reactor with Dielectric Barrier Discharge for Treating Ethylene", Appl. Chem. Eng., 26, 495-504, (2015) https://doi.org/10.14478/ace.2015.1066
  25. Stoyanova, M., Konova, P. Nikolov, P., Naydenov, A., Christoskova, S., and Mehandjiev, D., "Alumina-Supported Nickel Oxide for Ozone Decomposition and Catalytic Ozonation of CO and VOCs", Chem. Eng. J., 122, 41-46, (2006) https://doi.org/10.1016/j.cej.2006.05.018
  26. Babaie, M., Davari, P., Talebizadeh, P., Zare, F., Rahimzadeh, H., Ristovski, Z., and Brown, R., "Performance Evaluation of Non-thermal Plasma on Particulate Matter, Ozone and $CO_2$ Correlation for Diesel Exhaust Emission Reduction", Chem. Eng. J., 276, 240-248, (2015) https://doi.org/10.1016/j.cej.2015.04.086
  27. Kim, Y.H. and Park, E.D., "The Effect of the Crystalline Phase of Alumina on the Selective CO Oxidation in a Hydrogen-Rich Stream over $Ru/Al_2O_3$", Appl. Catal. B: Environ., 96, 41-50, (2010) https://doi.org/10.1016/j.apcatb.2010.02.001

Acknowledgement

Supported by : 제주대학교