First-principles Calculations on Magnetism of 1H/1T Boundary in Monolayer MoS2

제일원리계산에 의한 단층 MoS2의 1H/1T 경계 자성

Jekal, Soyoung;Hong, Soon Cheol

  • Received : 2016.05.25
  • Accepted : 2016.06.14
  • Published : 2016.06.30


Monolayer $MoS_2$ is energetically most stable when it has a 1H phase, but 1H to 1T phase transition ($1H{\rightarrow}1T$) is easily realized by various ways. Even though magnetic moment is not observed during $1H{\rightarrow}1T$, $0.049{\mu}_B/MoS_2$ is obtained in local 1T phase; 75% 2H and 25% 1T phases are mixed in ($2{\times}2$) supercell. Most magnetic moment is originated from the 1T phase Mo atom in the supercell, while the magnetic moments of other atoms are negligible. As a result, magnetic/non-magnetic boundary is created in the monolayered $MoS_2$. Our result suggests that $MoS_2$ can be applied for spintronics such as a spin transistor.


first principles calculation;2D material;electronic structure;spitronics


  1. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
  2. W. S. Yun and J. D Lee, J. Phys. Chem. C 119, 2822 (2015).
  3. K. Lee, W. S. Yun, and J. D. Lee, Phys. Rev. B 91, 125420 (2015).
  4. S. Lebegue and O. Eriksson, Phys. Rev. B 79, 115409 (2009).
  5. W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, Phys. Rev. B 85, 033305 (2012).
  6. H. Li, J. Wu, X. Huang, Z. Yin, J. Liu, and H. Zhang, ACS Nano 8, 6563 (2014).
  7. S. W. Han, H. Kwon, S. K. Kim, S. Ryu, W. S. Yun, D. H. Kim, J. H. Hwang, J.-S. Kang, J. Baik, H. J. Shin, and S. C. Hong, Phys. Rev. B 84, 045409 (2010).
  8. S. W. Han, Y. H. Hwang, S.-H. Kim, W. S. Yun, J. D. Lee, M. G. Park, S. Ryu, J. S. Park, D.-H. Yoo, S.-P. Yoon, S. C. Hong, K. S. Kim, and Y. S. Park, Phys. Rev. Lett. 110, 247201 (2013).
  9. Y. Li, Z. Zhou, S. Zhang, and Z. Chen, J. Am. Chem. Soc. 130, 16739 (2008).
  10. H. Pan and Y. W. Zhang, J. Mater. Chem. 22, 7280 (2012).
  11. S. Tongay, S. S. Varnoosfaderani, B. R. Appleton, J. Wu, and A. F. Hebard, Appl. Phys. Lett. 101, 123105 (2012).
  12. H. Pan and Y. W. Zhang, J. Phys. Chem. C 116, 11752 (2012).
  13. S. Cristol, J. F. Paul, E. Payen, D. Bougeard, S. Clemendot, and F. Hutschka, J. Phys. Chem. B 106, 5659 (2002).
  14. Q. Yue, Z. Shao, S. Chang, and J. Li, Nanoscale Res. Lett. 8, 1 (2013).
  15. N. M. Galea, E. S. Kadantsev, and T. Ziegler, J. Phys. Chem. C 113, 193 (2008).
  16. Y. C. Lin, D. O. Dumcenco, Y. S. Huang, and K. Suenaga, Nat. Nanotechnol. 9, 391 (2014).
  17. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
  18. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 5, 15 (1996).
  19. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
  20. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
  21. P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
  22. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
  23. P. Maragakis, S. A. Andreev, Y. Brumer, D. R. Reichman, and E. Kaxiras, J. Chem. Phys. 117, 4651 (2002).
  24. Q. Tang and D. E. Jiang, Chem. Mater. 27, 3743 (2015).
  25. S. Mathew, K. Gopinadhan, T. K. Chan, X. J. Yu, D. Zhan, L. Cao, A. Rusydi, M. B. H. Breese, S. Dhar, Z. X. Shen, T. Venkatesan, and John T. L. Thong, Appl. Phys. Lett. 101, 102103 (2012).


Supported by : 한국연구재단