DOI QR코드

DOI QR Code

First-principles Calculations on Magnetism of 1H/1T Boundary in Monolayer MoS2

제일원리계산에 의한 단층 MoS2의 1H/1T 경계 자성

Jekal, Soyoung;Hong, Soon Cheol
제갈소영;홍순철

  • Received : 2016.05.25
  • Accepted : 2016.06.14
  • Published : 2016.06.30

Abstract

Monolayer $MoS_2$ is energetically most stable when it has a 1H phase, but 1H to 1T phase transition ($1H{\rightarrow}1T$) is easily realized by various ways. Even though magnetic moment is not observed during $1H{\rightarrow}1T$, $0.049{\mu}_B/MoS_2$ is obtained in local 1T phase; 75% 2H and 25% 1T phases are mixed in ($2{\times}2$) supercell. Most magnetic moment is originated from the 1T phase Mo atom in the supercell, while the magnetic moments of other atoms are negligible. As a result, magnetic/non-magnetic boundary is created in the monolayered $MoS_2$. Our result suggests that $MoS_2$ can be applied for spintronics such as a spin transistor.

Keywords

first principles calculation;2D material;electronic structure;spitronics

References

  1. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011). https://doi.org/10.1038/nnano.2010.279
  2. W. S. Yun and J. D Lee, J. Phys. Chem. C 119, 2822 (2015). https://doi.org/10.1021/jp510308a
  3. K. Lee, W. S. Yun, and J. D. Lee, Phys. Rev. B 91, 125420 (2015). https://doi.org/10.1103/PhysRevB.91.125420
  4. S. Lebegue and O. Eriksson, Phys. Rev. B 79, 115409 (2009). https://doi.org/10.1103/PhysRevB.79.115409
  5. W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, Phys. Rev. B 85, 033305 (2012). https://doi.org/10.1103/PhysRevB.85.033305
  6. H. Li, J. Wu, X. Huang, Z. Yin, J. Liu, and H. Zhang, ACS Nano 8, 6563 (2014). https://doi.org/10.1021/nn501779y
  7. S. W. Han, H. Kwon, S. K. Kim, S. Ryu, W. S. Yun, D. H. Kim, J. H. Hwang, J.-S. Kang, J. Baik, H. J. Shin, and S. C. Hong, Phys. Rev. B 84, 045409 (2010).
  8. S. W. Han, Y. H. Hwang, S.-H. Kim, W. S. Yun, J. D. Lee, M. G. Park, S. Ryu, J. S. Park, D.-H. Yoo, S.-P. Yoon, S. C. Hong, K. S. Kim, and Y. S. Park, Phys. Rev. Lett. 110, 247201 (2013). https://doi.org/10.1103/PhysRevLett.110.247201
  9. Y. Li, Z. Zhou, S. Zhang, and Z. Chen, J. Am. Chem. Soc. 130, 16739 (2008). https://doi.org/10.1021/ja805545x
  10. H. Pan and Y. W. Zhang, J. Mater. Chem. 22, 7280 (2012). https://doi.org/10.1039/c2jm15906f
  11. S. Tongay, S. S. Varnoosfaderani, B. R. Appleton, J. Wu, and A. F. Hebard, Appl. Phys. Lett. 101, 123105 (2012). https://doi.org/10.1063/1.4753797
  12. H. Pan and Y. W. Zhang, J. Phys. Chem. C 116, 11752 (2012). https://doi.org/10.1021/jp3015782
  13. S. Cristol, J. F. Paul, E. Payen, D. Bougeard, S. Clemendot, and F. Hutschka, J. Phys. Chem. B 106, 5659 (2002). https://doi.org/10.1021/jp0134603
  14. Q. Yue, Z. Shao, S. Chang, and J. Li, Nanoscale Res. Lett. 8, 1 (2013). https://doi.org/10.1186/1556-276X-8-1
  15. N. M. Galea, E. S. Kadantsev, and T. Ziegler, J. Phys. Chem. C 113, 193 (2008).
  16. Y. C. Lin, D. O. Dumcenco, Y. S. Huang, and K. Suenaga, Nat. Nanotechnol. 9, 391 (2014). https://doi.org/10.1038/nnano.2014.64
  17. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  18. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 5, 15 (1996).
  19. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
  20. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  21. P. E. Blochl, Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
  22. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188
  23. P. Maragakis, S. A. Andreev, Y. Brumer, D. R. Reichman, and E. Kaxiras, J. Chem. Phys. 117, 4651 (2002). https://doi.org/10.1063/1.1495401
  24. Q. Tang and D. E. Jiang, Chem. Mater. 27, 3743 (2015). https://doi.org/10.1021/acs.chemmater.5b00986
  25. S. Mathew, K. Gopinadhan, T. K. Chan, X. J. Yu, D. Zhan, L. Cao, A. Rusydi, M. B. H. Breese, S. Dhar, Z. X. Shen, T. Venkatesan, and John T. L. Thong, Appl. Phys. Lett. 101, 102103 (2012). https://doi.org/10.1063/1.4750237

Acknowledgement

Supported by : 한국연구재단