DOI QR코드

DOI QR Code

Influence of Layer-thickness and Annealing on Magnetic Properties of CoSiB/Pd Multilayer with Perpendicular Magnetic Anisotropy

박막 두께 및 열처리가 수직자기이방성을 갖는 CoSiB/Pd 다층박막의 자기적 특성에 미치는 영향

Jung, Sol;Yim, Haein
정솔;임혜인

  • Received : 2016.06.01
  • Accepted : 2016.06.14
  • Published : 2016.06.30

Abstract

CoSiB is the amorphous ferromagnetic material and multilayer consisting of CoSiB and Pd has perpendicular magnetic anisotropic property. PMA has strong advantages for STT-MRAM. Moreover, amorphous materials have two advantages more than crystalline materials: no grain boundary and good thermal stability. Therefore, we studied the magnetic properties of multilayers consisting of the $Co_{75}Si_{15}B_{10}$ with PMA. In this study, we investigated the magnetic property of the [CoSiB (3, 4, 5, and 6) ${\AA}$/Pd(11, 13, 15, 17, 19,and $24{\AA})]_5$ multilayers and found the annealing temperature dependence of the magnetic property. The annealing temperature range is from room temperature to $500^{\circ}C$. The coercivity and the saturation magnetization of the CoSiB/Pd multilayer system have a close association with the annealing temperature. Moreover, the coercivity especially shows a sudden increasing at the specific annealing temperature.

Keywords

amorphous CoSiB;CoSiB/Pd;multilayer;perpendicular magnetic anisotropy

References

  1. S.-I. Iwasaki and K. Takemura, IEEE Trans. Magn. 11, 1173 (1975). https://doi.org/10.1109/TMAG.1975.1058930
  2. P. F. Carcia, A. D. Meinhaldt, and A. Sunna, Appl. Phys. Lett. 47, 178 (1985). https://doi.org/10.1063/1.96254
  3. N. Nishimura, T. Hirai, A. Koganei, T. Ikeda, K. Okant, Y. Sekiguchi, and Y. Osada, J. Appl. Phys. 91, 5246 (2002). https://doi.org/10.1063/1.1459605
  4. F. J. A. den Broeder, D. Kuiper, A. P. van de Mosselaer, and W. Hoving, Phys. Rev. Lett. 60, 2769 (1988). https://doi.org/10.1103/PhysRevLett.60.2769
  5. J. F. Weaver, A. F. Carlsson, and F. J. Madix, Surf. Sci. Rep. 50, 107 (2003). https://doi.org/10.1016/S0167-5729(03)00031-1
  6. G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans, Phys. Rev. B 50, 9989 (1994). https://doi.org/10.1103/PhysRevB.50.9989
  7. J. Z. Sun, Phys. Rev. B 62, 570 (2000). https://doi.org/10.1103/PhysRevB.62.570
  8. F. J. Albert, N. C. Emley, E. B. Myers, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. 89, 226802 (2002). https://doi.org/10.1103/PhysRevLett.89.226802
  9. K. Yagami, A. A. Tulapurkar, A. Fukushima, and Y. Suzuki, Appl. Phys. Lett. 85, 5634 (2002).
  10. H.-J. Suh and K.-J. Lee, Curr. Appl. Phys. 9, 985 (2009). https://doi.org/10.1016/j.cap.2008.10.004
  11. R. Sbiaa, S. Y. H. Lua, R. Law, H. Meng, R. Lye, and H. K. Tan, J. Appl. Phys. 190, 07C707 (2011).
  12. J. Y. Park and H. I. Choi-Yim, IEEE Tran. Magn. 45, 2413 (2009). https://doi.org/10.1109/TMAG.2009.2018593
  13. S. Jung, J. B. Yoon, and H. I. Yim, J. Korean Phys. Soc. 62, L10 (2013). https://doi.org/10.3938/jkps.62.10
  14. J. B. Yoon, S. Jung, Y. H. Choi, J. H. Cho, M. H. Jung, H. I. Yim, and C. Y. Yon, J. Appl. Phys. 113, 17A342 (2013). https://doi.org/10.1063/1.4801425
  15. S. Jung and H. I. Yim, J. Nanosci. Nanotechnol. 15, 8336 (2015). https://doi.org/10.1166/jnn.2015.11250