Influence of Layer-thickness and Annealing on Magnetic Properties of CoSiB/Pd Multilayer with Perpendicular Magnetic Anisotropy

박막 두께 및 열처리가 수직자기이방성을 갖는 CoSiB/Pd 다층박막의 자기적 특성에 미치는 영향

Jung, Sol;Yim, Haein

  • Received : 2016.06.01
  • Accepted : 2016.06.14
  • Published : 2016.06.30


CoSiB is the amorphous ferromagnetic material and multilayer consisting of CoSiB and Pd has perpendicular magnetic anisotropic property. PMA has strong advantages for STT-MRAM. Moreover, amorphous materials have two advantages more than crystalline materials: no grain boundary and good thermal stability. Therefore, we studied the magnetic properties of multilayers consisting of the $Co_{75}Si_{15}B_{10}$ with PMA. In this study, we investigated the magnetic property of the [CoSiB (3, 4, 5, and 6) ${\AA}$/Pd(11, 13, 15, 17, 19,and $24{\AA})]_5$ multilayers and found the annealing temperature dependence of the magnetic property. The annealing temperature range is from room temperature to $500^{\circ}C$. The coercivity and the saturation magnetization of the CoSiB/Pd multilayer system have a close association with the annealing temperature. Moreover, the coercivity especially shows a sudden increasing at the specific annealing temperature.


amorphous CoSiB;CoSiB/Pd;multilayer;perpendicular magnetic anisotropy


  1. S.-I. Iwasaki and K. Takemura, IEEE Trans. Magn. 11, 1173 (1975).
  2. P. F. Carcia, A. D. Meinhaldt, and A. Sunna, Appl. Phys. Lett. 47, 178 (1985).
  3. N. Nishimura, T. Hirai, A. Koganei, T. Ikeda, K. Okant, Y. Sekiguchi, and Y. Osada, J. Appl. Phys. 91, 5246 (2002).
  4. F. J. A. den Broeder, D. Kuiper, A. P. van de Mosselaer, and W. Hoving, Phys. Rev. Lett. 60, 2769 (1988).
  5. J. F. Weaver, A. F. Carlsson, and F. J. Madix, Surf. Sci. Rep. 50, 107 (2003).
  6. G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans, Phys. Rev. B 50, 9989 (1994).
  7. J. Z. Sun, Phys. Rev. B 62, 570 (2000).
  8. F. J. Albert, N. C. Emley, E. B. Myers, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. 89, 226802 (2002).
  9. K. Yagami, A. A. Tulapurkar, A. Fukushima, and Y. Suzuki, Appl. Phys. Lett. 85, 5634 (2002).
  10. H.-J. Suh and K.-J. Lee, Curr. Appl. Phys. 9, 985 (2009).
  11. R. Sbiaa, S. Y. H. Lua, R. Law, H. Meng, R. Lye, and H. K. Tan, J. Appl. Phys. 190, 07C707 (2011).
  12. J. Y. Park and H. I. Choi-Yim, IEEE Tran. Magn. 45, 2413 (2009).
  13. S. Jung, J. B. Yoon, and H. I. Yim, J. Korean Phys. Soc. 62, L10 (2013).
  14. J. B. Yoon, S. Jung, Y. H. Choi, J. H. Cho, M. H. Jung, H. I. Yim, and C. Y. Yon, J. Appl. Phys. 113, 17A342 (2013).
  15. S. Jung and H. I. Yim, J. Nanosci. Nanotechnol. 15, 8336 (2015).