DOI QR코드

DOI QR Code

Effect of 1,3-Diphenyl-guanidine (DPG) Mixing Step on the Properties of SSBR-silica Compounds

Lim, Seok-Hwan;Lee, Sangdae;Lee, Noori;Ahn, Byeong Kyu;Park, Nam;Kim, Wonho

  • Received : 2015.11.13
  • Accepted : 2016.06.07
  • Published : 2016.06.30

Abstract

1,3-Diphenylguanidine (DPG) is commonly used as a secondary accelerator which not only acts as booster of cure but also activating silanization reaction. The aim of this study is to increase the interaction between silica and rubber by using DPG. In this study, mixing was proceeded in two steps. The T-1 compound is mixed DPG with silica and silane coupling agent in the kneader at high temperature which is named as $1^{st}$ mixing step. T-3 compound is mixed DPG with curatives in the two-roll mill at low temperature which is named as $2^{nd}$ mixing step. The T-2 compound is mixed a half of DPG in $1^{st}$ mixing step and the remainder is mixed in $2^{nd}$ mixing step. Total DPG content was equal for all compounds. When DPG is mixed with silica, silane coupling agent during the $1^{st}$ mixing step, a decrease in cure rate and an increase in scorch time can be seen. This indicates that DPG is adsorbed on the surface of silica. during rubber processing. However, bound rubber content is increased and dynamic properties are improved. These results are due to the highly accelerated silanization reaction. However, there are no significant difference in 100%, 300% modulus.

Keywords

silica dispersion;DPG;filler aggregates;solution styrene butadiene rubber;silanization reaction

References

  1. G. Heinrich and T. A. Vilgis, "Why silica technology needs SSBR in high performance tires? The physics of confined polymers in filled rubbers", Kaut. Gummi Kunstst., 61, 368 (2008).
  2. B. Schwaiger and A. Blume, "Silica/silane - a winning reinforcement formula", Rubber World, 222, 32 (2000).
  3. H.-D. Luginsland and W. Niedermeier," New reinforcing materials for rising tire performance demands", Rubber World, 228, 34 (2003).
  4. M. P. Wagner, "Reinforcing Silicas and Silicates", Rubber Chem. Technol., 49, 703 (1976). https://doi.org/10.5254/1.3534979
  5. G. Mathew, M. Y. Huh, J. M. Rhee, M. H. Lee, and C. Nah, "Improvement of properties of silica-filled styrene-butadiene rubber composites through plasma surface modification of silica", Polym. Adv. Technol., 15, 400 (2004). https://doi.org/10.1002/pat.482
  6. Werner Hofman, In: Rubber Technology Handbook - Ed. Werner.
  7. S. Wolff, U. Gorl, M. J. Wang, and W. Wolff, "Silane modified silica", Eur. Rubber J., 16, 16 (1994).
  8. M. L. Hair and W. Hertl, "Acidity of surface hydroxyl groups", J. Phys. Chem., 74, 91 (1970). https://doi.org/10.1021/j100696a016
  9. M. J. Wang and S. Wolff, "Filler-elastomer interactions. Part 2. Investigation of the energetic heterogeneity of silica surfaces", Kaut. Gummi Kunstst., 45, 11 (1992).
  10. A. I. Medalia, "Filler Aggregates and Their Effect on Reinforcement", Rubber Chem. Technol., 47, 411 (1974). https://doi.org/10.5254/1.3540450
  11. C. Hepburn, on "Filler reinforcement of rubber", Plastics and Rubber International, 9, 11 (1984).
  12. M. P. Wagner, "Reinforcing Silicas and Silicates", Rubber Chem. Technol., 49, 703 (1976). https://doi.org/10.5254/1.3534979
  13. S. D. Patkar, L. R Evans, and W. H. Waddel, Rubber Plast News, p. 237, (Sept., 1997).
  14. F. Yatsuyanagi, N. Suzuki, and H. Kaidou, "Effects of Surface Chemistrys of Silica Particles on the Mechanical Properties of Silica Filled Styrene-Butadiene Rubber Systems", Polymer Journal, 34, 332 (2002). https://doi.org/10.1295/polymj.34.332
  15. Y. Bomal, P. Cochet, B. Dejean, and J. Machurat, "Influence of mixing procedures on the properties of a silica reinforced agricultural tire tread", Rubber World, 208, 33 (1993).
  16. W. K. Diekes, J. W. M. Noordermeer, K. Kelting, and A. Limper, "Improving silica compound processing: optimization of the mixing equipment", Rubber World, 229, 6 (2004).
  17. S. Wolff, "Chemical Aspects of Rubber Reinforcement by Fillers", Rubber Chem. Technol., 69, 325 (1996). https://doi.org/10.5254/1.3538376
  18. T. Kataoka, B. Zetterlund, and B. Yamada, "Effect of mixing sequence on the properties of carbon black and silica filled rubber", Plast. Rubber Comp., 32, 291 (2003). https://doi.org/10.1179/146580103225003433
  19. H. D. Luginland, "Processing of the organo silane Si69", SRC conference, Puchov, Poland (1999).
  20. A. Hashim, B. Azahari, Y. Ikeda, and S. Kohjiya, "The Effect of Bis(3-Triethoxysilylpropyl) Tetrasulfide on Silica Reinforcement of Styrene-Butadiene Rubber", Rubber Chem. Technol., 71, 289 (1998). https://doi.org/10.5254/1.3538485
  21. J. Ten Brinke, S. Debnath, L. Reuvekamp, and J. Noordermeer, "Mechanistic aspects of the role of coupling agents in silica-rubber composites", Compos. Sci. Technol., 63, 1165 (2003). https://doi.org/10.1016/S0266-3538(03)00077-0
  22. G. Thielen and C. Berg, "Hydroxy and nitrile modified emulsion SBR's in silica compounds", Kaut. Gummi Kunstst., 61, 377 (2008).
  23. S. S. Choi and S. Park, "Influence of Kinds of Fatty Acids and Poly(ethylene glycol)s on Properties of Silica-Filled Natural Rubber Compounds", Korea Polym. J., 9, 92 (2001).
  24. W. David, "Rubber composition for a tire comprising a reinforcing inorganic filler and an (inorganic filler/elastomer) coupling system", U. S. Pat. 6.951.897 to Michelin Recherche et Technique S. A., (23-07-2002).
  25. W. Katarzyna, "Rubber composition for a tire comprising a reinforcing inorganic filler and an (inorganic filler/elastomer) coupling system", U. S. Pat. 6.984.689 to Michelin Recherche et Technique S. A., (23-07-2002)
  26. M. Zaboski and J. B. Donnet, "Activity of fillers in elastomer networks of different structure (pages 87-100)", Macromol. Symp., 194, 87 (2003). https://doi.org/10.1002/masy.200390108
  27. J. Ramier, L. Chazeau, C. Gauthier, L. Guy, and M. N. Bouchereau, "Influence of silica and its different surface treatments on the vulcanization process of silica filled SBR," Rubber Chem. Technol., 80, 183 (2007). https://doi.org/10.5254/1.3548165
  28. S. Mihara, "Reactive processing of silica-reinforced tire rubber: new insight into the time- and temperature-dependence of silica rubber interaction. Ph.D thesis, University of Twente, Enschede, the Netherlands (2009).
  29. J. Byers, "Silane coupling agents for enhanced silica performance", Rubber World, (Sept., 1998).
  30. K. J. Kim and J. Vanderkooi, "The Dispersion of Carbon Black in Rubber Part III. The Effect of Dispersion Quality on the Dynamic Mechanical Properties of Filled Natural Rubber", Rubber Chem. Technol., 65, 1016 (1992). https://doi.org/10.5254/1.3538646
  31. L. Guy, S. Daudey, P. Cochet, and Y. Bomal, "New Insights in the Dynamic Properties of Precipitated Silica Filled Rubber Using a New High Sureface Silica", Kautsch. Gummi Kunststr., 62, 383 (2009).
  32. A. E. Juve, in: Vulcanization of Elastomers, C. Alliger, I. J. Sjothum (Eds.), Reinhold PC, New York 1964, Chapt. 2
  33. D. S. Campbell, "Structural Characterization of Vulcanizates Part X. Thiol-Disulfide Interchange for Cleaving Disulfide Crosslinks in Natural Rubber Vulcanizates", Rubber Chem. Teclmol., 43, 210 (1970). https://doi.org/10.5254/1.3547248
  34. J. I. Cunneen and R. M. Russell, "Occurrence and Prevention of Changes in the Chemical Structure of Natural Rubber Tire Tread Vulcanizates during Service", Rubber Chem. Teclmol., 43, 1215 (1970). https://doi.org/10.5254/1.3547319
  35. D. S. Campbell and B Saville, Proc Intern Rubb Conf, Brighton (1967) Part 1.
  36. D. S. Campbell, "Structural characterization of vulcanizates part X. Thiol-disulfide interchange for cleaving disulfide crosslinks in natural rubber vulcanizates", J. Appl. Poly Sci., 13, 1201 (1969). https://doi.org/10.1002/app.1969.070130609
  37. P. J. Flory and J. Rehner, "Statistical Mechanics of Cross-Linked Polymer Networks I. Rubber like Elasticity", J. Chem. Phys., 11, 521 (1943). https://doi.org/10.1063/1.1723792
  38. B. Saville and A. A. Watson, "Structural Characterization of Sulfur-Vulcanized Rubber Networks", Rubber Chem. Technol., 40, 100 (1967). https://doi.org/10.5254/1.3539039
  39. M. Porter, "Structural Characterization of Filled Vulcanizates Part 1. Determination of the Concentration of Chemical Crosslinks in Natural Rubber Vulcanizates Containing High Abrasion Furnace Black", Rubber Chem. Technol., 40, 866 (1967). https://doi.org/10.5254/1.3539101
  40. J. W. ten Brinke, "Silica reinforced tyre rubbers: mechanistic aspects of the role of coupling agents", PhD. Thesis: 2002, Dept. of Rubber Technology, Univ. of Twente, Enschede, the Netherlands.
  41. S. Mihara, R. N. Datta, A. G. Talma, and J. W. M. Noordermeer, "Rubber composition", (to the Yokohama Rubber Co., Ltd. Tokyo, JP), U.S. Patent 7923493, April 12 (2011).
  42. P. Sa-Nguanthammarong, "A study of abrasion resistance of silica-filled natural rubber and its improvement", Mahidol University (1999).
  43. S. Toki, W. Sainumsai, and K. Suchiva, "Crosslink, entanglement and strain-induced crystallization of NR", Constitutive Models for Rubbers IX, pp. 515-520.
  44. S. Wolff, "Silanes in Tire Compounding After Ten Years - A Review", Tire Sci. Technol., 15, 276 (1987). https://doi.org/10.2346/1.2148794
  45. M. Wang, "Effect of Polymer-Filler and Filler-Filler interactions on Dynamic Properties of Filled-Vulcanizates", Rubber Chem. Technol., 71, 520 (1998). https://doi.org/10.5254/1.3538492
  46. L. Nikiel, M. Gerspacher, H. Yang, and C. P. O'Farrell, "Filler Dispersion, Network Density, and Tire Rolling Resistance", Rubber Chem. Technol., 74, 249 (2001). https://doi.org/10.5254/1.3544948