The Effect of Surface Area of Silicas on Their Reinforcing Performance to Styrene-butadiene Rubber Compounds

  • Ryu, Changseok (Mirae Scientific Instruments Inc.) ;
  • Kim, Sun Jung (Mirae Scientific Instruments Inc.) ;
  • Kim, Do Il (Mirae Scientific Instruments Inc.) ;
  • Kaang, Shinyoung (School of Chemical Engineering, Chonnam National University) ;
  • Seo, Gon (School of Chemical Engineering, Chonnam National University)
  • Received : 2016.04.12
  • Accepted : 2016.05.13
  • Published : 2016.06.30


The effect of the surface area of silicas on their reinforcing performance to styrene-butadiene rubber (SBR) compounds was systematically investigated. The feasibility of the Brunauer-Emmett-Teller surface area ($S_{BET}$) as a parameter representing the characteristics of the silicas was discussed compared to the mesopore volume, c value, oil absorption, and uptake of silane. The increase in $S_{BET}$ of silicas caused a considerable increase in Mooney viscosity, minimum torque, and hysteresis loss of the silica-filled SBR compounds, while significantly enhancing their abrasion property. These changes were explained by the attrition between the hydrophilic silica surface and the hydrophobic rubber chains. As expected, the change in $S_{BET}$ did not induce any remarkable changes in the cure, processing, tensile, and dynamic properties of the silica-filled SBR compounds because the crosslinking density of the rubber chains mainly determined these properties.


  1. G. Fontaras and Z. Samaras, "On the Way to 130 g $CO_2$/km-Estimating the Future Characteristics of the Average European Passenger Car", Energy Policy, 38, 1826 (2010).
  2. G. Fontaras and Z. Samaras, "The Evolution of European Passenger Car Characteristics 2000-2010 and its Effects on Real-World $CO_2$ Emission and $CO_2$ Reduction Policy", Energy Policy, 49, 719 (2012).
  4. G. Heinlich and T. A. Vilgis, "Why Silica Technology Needs S-SBR in High Performance Tires", KGK, 368, Juli/Aug 2008.
  5. J. Ramier, L. Chazeau, C. Gauthier, L. Guy, and M. N, Bouchereau, "Influence of Silica and Different Surface Treatments on the Vulcanization Process of Silica Filled SBR", Rubber Chem. Technol., 80, 183 (2007).
  6. K.-J. Kim and J. VanderKooi, "TESPT and Treated Silica Compounds on TESPD Rheological Property and Silica Break Down In Natural Rubber", KGK, 55, 518 (2002).
  8. N. Hewitt, "Compounding Precipitated Silica in Elastomers", Chap. 1, William Andrew Publishing, Norwich, New York, 2007.
  9. M.-R. Pourhossaini and M. Razzaghi-Kashani, "Effect of Silica Particle Size on Chain Dynamics and Frictional Properties of Styrene Butadiene Rubber Nano and Micro Composites", Polymer, 55, 2279 (2014).
  10. A. Voet, J. C. Morawski, and J. B. Donnet, "Reinforcement of Elastomers by Silica", Rubber Chem. Technol., 50, 342 (1977).
  11. M.-J. Wang, "Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of Filled Vulcanizates", Rubber Chem. Technol., 71, 520 (1998).
  12. S. Wolff, "Chemical Aspects of Rubber Reinforcement by Fillers", Rubber Chem. Technol., 69, 325 (1996).
  13. R. A. Klyne, B. D. Simpson, and M. L. Studebaker, "A Comparison of Methods for Determining Surface Areas of Carbon Black", Rubber Chem. Technol., 46, 192 (1973).
  14. S. Chakraborty and D. Shah, "Precipitated Silica in Tires", Rubber World, Sep. 2013.
  15. D. M. Young and A. D. Crowell, "Physical Adsorption of Gases", pp. 147-164, Butterworths, Washington, 1962.
  16. S. K. Wason, "Synthetic Silicas", in Handbook of Fillers for Plastics, H. S. Katz and J. V. Milewski, Eds., p. 172, Van Nostrand Reinhold, New York (1987).
  17. V. Dugas and Y. Chevalier, "Surface Hydroxylation and Silane Grafting on Fumed and Thermal Silica", J. Colloid Inter. Sci., 264, 354 (2003).
  18. G. Seo, S. Kaang, C. K. Hong, D. S. Jung, C. S. Ryu, and D. H. Lee, "Preparation of Novel Fillers, Named Networked Silicas, and their Effects of Reinforcement on Rubber Compounds", Polym. Int., 57, 1101 (2008).
  19. G. Seo, S. M. Park, K. Ha, K. T. Choi, C. K. Hong, and S. Kaang, "Effectively Reinforcing Roles of the Networked Silica Prepared Using 3,3'-bis[3-(triethoxysilyl)propyl] tetrasulfide in the Physical Properties of SBR Compounds", J. Mater. Sci., 45, 1897 (2010).
  20. J. Park, K. Kim, S.-H. Lim, Y. Hong, H.-J Paik, and W. Kim, "Functionalized Emulsion Styrene-Butadiene Rubber Containing Diethylaminoethyl Methacrylates for Silica Filled Compounds", Elast. Compos., 50, 110 (2015).
  21. P. J. Flory and J. Rehner, Jr., "Statistical Mechanics of Cross-Linked Polymer Networks. II. Swelling", J. Chem. Phys., 11, 521 (1943).
  22. N. Rattanasom, S. Prasertsri, and T. Ruangritnumchai, "Comparison of the Mechanical Properties at Similar Hardness Level of Natural Rubber Filled with Various Reinforcing-Fillers", Polymer Testing, 28, 8 (2009).
  23. C. K. Hong, H. Kim, C. Ryu, C. Nah, Y.-I. Huh, and S. Kaang, "Effect of Particle Size and Structure of Carbon Blacks on the Abrasion of Filled Elastomer Compounds", J Mater. Sci., 42, 8391 (2007).
  24. S. Maghami, W. K. Dierkes, T. V. Tolpekina, S. M. Schultz, and J. W. M. Noordermeer, "Role of Material Composition in the Construction of Viscoelastic Master Curves: Silica-Filler Network Effects", Rubber Chem. Technol., 85, 513 (2012).
  25. M.-J. Wang, S. Wollf, and J.-B. Donnet., "Filler-Elastomer Interactions. Part I: Silica Surface Energies and Interactions with Model Compounds" Rubber Chem. Technol., 64, 559 (1991).
  26. G. Kraus, "Swelling of Filler-Reinforced Vulcanizates", J. Appl. Polym. Sci., 7, 861 (1963).
  27. C. G. Robertson, C. J. Lin, R. B. Bogoslovov, M. Rackaitis, P. Sadhukhan, J. D. Quinn, and C. M. Rolando, "Flocculation, Reinforcement, and Glass Transition Effects in Silica-Filled Styrene-Butadiene Rubber", Rubber Chem. Technol., 84, 507 (2011).

Cited by

  1. Reinforcement of styrene-butadiene/polybutadiene rubber compounds by modified silicas with different surface and networked states vol.134, pp.22, 2017,