DOI QR코드

DOI QR Code

Synthesis of Copoly(amide-imide)s Based on Silica Nano Particles-polyacrylamide

  • Received : 2016.05.25
  • Accepted : 2016.06.09
  • Published : 2016.06.30

Abstract

It is an inconvenience for silica nano-particles to dry again when using it in that they cohere each other through moisture in the air. Acrylamide groups were introduced to improve such inconvenience and copolymerized with silica nano-particles and then we copolymerized again with polyamic acid in order to increase thermal characteristic. Amide block copolymers were prepared using silica and (3-mercaptopropyl) trimethoxysilane (MPTMS) with a siloxane group, using 2,6-Lutidine as a catalyst. Amide block polymers and copolymers were synthesized via ATRP after brominating pyromellitic dianhydride (PMDA) and polyamic acid of methylene diphenyl diamine (MDA), using ${\alpha}$-bromo isobutyryl bromide. Characteristic peaks of copolymer with amide and imide groups and patterns of amorphous polymers were researched by FT-IR and XRD analyses and the analysis of surface characteristic groups was conducted via XPS. A change in thermal properties was examined through DSC and TGA and solubility for solvents was also researched.

Keywords

PAI;poly(amic acid);siloxane group;DABCO;MPTMS

References

  1. P. A. Lovell and M. S. El-Aasser, In "Emulsion polymerization and Emulsion polymer", Wiley, New York (1997).
  2. W. C. Bigelow, D. L. Pickett, and W. A. Zisman, "Self-assembly at solid surfaces", J. Colloid Interface Sci., 1, 513 (1946). https://doi.org/10.1016/0095-8522(46)90059-1
  3. J. J. Sagiv, "Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces", Am. Chem. Soc., 102, 92 (1980). https://doi.org/10.1021/ja00521a016
  4. R. G. Nuzzo and D. L. J. Allora, "Self-assemblede monolayers containing ${\omega}$-mercaptoalkylboronic acids adsorbed onto gold form a highly cross-linked, thermally stable borate glass surface", Am. Chem. Soc., 105, 4481 (1983). https://doi.org/10.1021/ja00351a063
  5. K. G. Das, Controlled Release Technology, Bioengineering Aspects, Wiley, New York (1983).
  6. Y. Haga, S. Inoue, T. Sato, and R. Yosomiya, "Photoconductivity properties of zinc oxide encapsulated in polymers", Angew. Makromol. Chem., 139, 49 (1986). https://doi.org/10.1002/apmc.1986.051390106
  7. G. Mayes and K. Mosbach, "Molecularly imprinted polymers: useful materials for analytical chemistry?", Trends Anal. Chem., 16, 321 (1997). https://doi.org/10.1016/S0165-9936(97)00037-X
  8. B. Sellergren, C. Dauwe, and T. Schneider, "Monolithic materials: Preparation, properties and applications", Macromolecules, 30, 2454 (1997). https://doi.org/10.1021/ma960745i
  9. M. Takenaga, Y. Serizawa, Y. Azechi, A. Ochiai, Y. Kosaka, R. Igarashi, and Y. Mizushima, "Synthesis of highlt cross-linked polymers in supercritical carbon dioxide by heterogeneous polymerization", J. Control Release., 52, 81 (1998). https://doi.org/10.1016/S0168-3659(97)00193-4
  10. C. Gauthier, G. Thollet, G. Vigier, E. Bourgeat-Lami, and A. Guyot, "Transmission electron microscopy observations of composite polymer colloid nucleated by functionalized silica", Polym. Adv. Technol., 6, 345 (2003).
  11. G. Laruelle, J. Parvole, J. Francois, and L. Billon, "Block copolymer grafted-silica particles: a core/double shell hybrid inorganic/organic material", Polymer, 45, 5013 (2004). https://doi.org/10.1016/j.polymer.2004.05.030
  12. I. Sondi, T. H. Fedynyshyn, R. Sinta, and E. Matijevic, "Colloidal polymers: synthesis and characterization", Langmuir, 16, 9031 (2000). https://doi.org/10.1021/la000618m
  13. Z. Z. Yang and D. Qiu, "Functional coatings: by polymer microencapsulation", Macromol. Rapid Commun., 23, 479 (2002). https://doi.org/10.1002/1521-3927(20020501)23:8<479::AID-MARC479>3.0.CO;2-4
  14. S. W. Zhang, S. X. Zhou, Y. M. Weng, and L. M. Wu, "Mass transport of nanocarriers", Langmuir, 21, 2124 (2008).
  15. B. Erdem, E. D. Sudol, V. L. Dimonie, and M. S. El-Aasser, "Encapsulation of inorganic particles via miniemulsion polymerization", Macromol. Sym., 155, 181 (2000). https://doi.org/10.1002/1521-3900(200004)155:1<181::AID-MASY181>3.0.CO;2-2
  16. D. G. Yu and J. H. An, Colloids Surfaces A: Physicochem. "Titanium dioxide core/polymer shell hybrid composite particles prepared by two-step dispersion polymerization", Eng. Aspects, 237, 87 (2004). https://doi.org/10.1016/j.colsurfa.2004.02.009
  17. D. G. Yu, J. H. An, J. Y. Bae, S. Kim, Y. E. Lee, S. D. Alm, S. Y. Kang, and K. S. Suh, "Carboxylic acid functional group containing inorganic core/polymer shell hybrid composite particles prepared by two-step", Colloids Surfaces A: Physicochem. Eng. Aspects, 245, 29 (2004). https://doi.org/10.1016/j.colsurfa.2004.06.026
  18. S. D. Seul, S. R. Lee, and Y. H. Kim, "Poly(methyl methacrylate) encapsulation of calcium carbonate particles", J. Polym. Sci. Part A: Polym. Chem., 42, 4063 (2004).
  19. Y. Yang, X. Z. Kong, C. Y. Kan, and C. G. Sun, "Encapsulation of calcium carbonate by styrene polymerization", Polym. Adv. Technol., 10, 54 (1999). https://doi.org/10.1002/(SICI)1099-1581(199901/02)10:1/2<54::AID-PAT766>3.0.CO;2-J
  20. L. Quaroni and G. Chunmanov, "Preparation of polymer-coated functionalized silver nanoparticles", J. Am. Chem. Soc., 121, 10642 (1999). https://doi.org/10.1021/ja992088q
  21. L. Quaroni and G. J. Chunmanov, "Preparation of polymer-coated functionalized silver nanoparticles", Am. Chem. Soc., 121, 10642 (1999). https://doi.org/10.1021/ja992088q
  22. J. H. Kim and T. R. Lee, "Thermo- and pH-responsive hydrogel-coated gold nanoparticles", Chem. Mater., 16, 3647 (2004). https://doi.org/10.1021/cm049764u
  23. E. Y. Lee, T. S. Hwang, and J. D. Nam, "Analysis of Thermal Imidization Kinetics of 6FDA-BAPP Polyimide in Relation with Solvent Evaporation", Polymer(Korea), 36, 448 (2012).
  24. J. G. Liu, X. J. Zhao, H.-S. Li. Fan, and S.-Y. Yang, "Organo-soluble fluorinated polyimides derived from bis-trifluoromethyl-substituted aromatic diamines and various aromatic dianhydrides", High Perform. Polym., 18, 851 (2006). https://doi.org/10.1177/0954008306063639
  25. M. P. Stevens, "Polymer chemistry an introduction", 3rd Ed. p. 106, Oxford University Press Inc., New York (1999).
  26. J. M. Margolis, "Engineering thermoplastics", ed. by J. M. Margolis, p. 315, Marcel Dekker Inc., New York (1985).
  27. R. Yokota, S. Yamamoto, S. Yano, T. Sawaguchi, M. Hasegawa, and R. Sato, "Molecular design of heat resistant polyimides having excellent processability and high glass transition temperature", High Perform. Polymer., 13, S61 (2001). https://doi.org/10.1088/0954-0083/13/2/306
  28. J. E. Han, B. K. Jeon, B. J. Goo, S. H. Cho, S. H. Kim, K. S. Lee, Y. H. Park, and J. Y. Lee, "Heat resistant electromagnetic noise absorber films using poly(amide imide)/soft magnet composite", Polym. (Korea), 33, 91 (2009).
  29. A. Halim, P. A. Gurr, A. Blencowe, G. Bryant, S. E. Kentish, and G. G. Qiao, "Synthesis and self-assembly of polyimide/poly(dimethylsiloxane) brush triblock copolymers", Polymer, 54, 520 (2013). https://doi.org/10.1016/j.polymer.2012.12.027
  30. M. Ghosh and K. L. Mittal, eds., "Polyimides: Fundamentalsand applications", Marcel Dekker, New York (1996).
  31. Cheil Industries Inc.. "Highly heat resistant acrylic copolymer and method for manufacturing same", Inc. Korea Patent, WO2013085153A1 (2013).
  32. J. H. Min and S. K. Min, "The characteristics of poly(acrylamide)-SiOx nanoparticles prepared by graft-polymerizaton", Appl. Chem. Eng., 21, 34 (2010).
  33. Y. Yang and Y. Dan, "Preparation of PMMA/$SiO_2$ composite particles via emulsion polymerization", Colloid Polym. Sci., 281, 794 (2003). https://doi.org/10.1007/s00396-002-0845-2
  34. S. Park, S. Chae, J. Rhee, and S. J. Kang, "A study on electrical and thermal properties of polyimide/MWNT nanocomposites", Bull. Korean Chem. Soc., 2279 (2010).
  35. M. Niwa, S. Nagaoka, and H. Kawakami, "Preparation of novel fluorinated block copolyimide membranes for gas separation", J. Appl. Polym. Sci., 100, 2436 (2006). https://doi.org/10.1002/app.23349
  36. T. P. Bender and Z. Y. Wang, "Synthesis of polyimides and segmented block copolyimides by transimidization", J. Polym. Sci., Part A Polym. Chem., 38, 3991 (2000). https://doi.org/10.1002/1099-0518(20001101)38:21<3991::AID-POLA170>3.0.CO;2-Y
  37. I. Honma, O. Nishikawa, T. Sugimoto, S. Nomura, and H. Nakajima, "Fuel cells", 2, 52 (2002). https://doi.org/10.1002/1615-6854(20020815)2:1<52::AID-FUCE52>3.0.CO;2-G
  38. J. A. Dean, "Lange,s handbook of chemistry", McGraw-Hill Professional, USA (1999).
  39. S. Y. Ha, B. K. Oh, and Y. M. Lee, "Preparation of poly(amideimide siloxane) from trimellitic anhydride chloride, oxylene diamine and oligo(dimethylsiloxane) diamine", Polymer, 36, 3549 (1995). https://doi.org/10.1016/0032-3861(95)92027-C
  40. M. Y. Jin, H. G. Jung, K. Y. Choi, and C. H. Yoon, "Synthesis and characterization of aromatic poly(amideimide-co-amide)s", Polym. Korea, 21, 973 (1997).
  41. Y. Kano and S. Akiyama, "Contact angle of organic liquids on poly(2-ethylhexyl acrylate-co-acrylic acid)", Polymer, 34, 376 (1993). https://doi.org/10.1016/0032-3861(93)90092-O

Acknowledgement

Supported by : 부경대학교