Ni-Cr과 Co-Cr 합금을 이용한 치과보철물의 부식 특성 및 도재 접합성



Kim, Kijung;Choi, Byungki;Oh, Doorok;Choi, Byung-Sang

  • 투고 : 2016.05.02
  • 심사 : 2016.06.23
  • 발행 : 2016.06.30


By using Ni-Cr and Co-Cr alloys, porcelain fused to metal (PFM) samples were prepared to examine the interface and the surface corrosion behavior. The potentiodynamic polarization analysis showed that the corrosion current density of Co-Cr alloy ($1.61{\times}10^{-6}A/cm^2$) was three times lower than that of Ni-Cr alloy ($4.83{\times}10^{-6}A/cm^2$) at room temperature. A dental prosthesis consisting of the porcelain fused to Ni-Cr alloy extracted from a patient after approximately four years of usage was examined to assess its resistance to corrosion. OM and SEM images of the metal part revealed a typical pitting corrosion. As compared to porcelain fused to Ni-Cr alloy having a thick layer (${\sim}10{\mu}m$) of oxide at the interface, a relatively thin oxide layer (less than $5{\mu}m$) was formed on Co-Cr alloy, indicating that the interface between Co-Cr alloy and porcelain may have a better adhesion strength than the interface between Ni-Cr alloy and porcelain.


dental prosthesis;porcelain fused to metal (PFM);pitting corrosion;Ni-Cr;Co-Cr


  1. S. S. Azer, G. M. Ayash, W. M. Johnston, M. F. Khalil and S. F. Rosenstiel, J. Prosthet Dent., 96, 379 (2006).
  2. J. Pisani-Proenca, M. C. Erhardt, L. F. Valandro, G. Guitierrrez-Aceves, M. V. Bolanos-Carmona, R. Del Castillo-Salmeron, and M. A. Bottino, J. Prosthet Dent., 94, 412 (2006).
  3. J-S. Ahn, E-K. Ko, and K-J. Joo, J. Kor. Acad. of Dent. Tech., 33, 18792 (2011).
  4. K-J. Kim, Ph. D. Thesis, Catholic University of Pusan (2013).
  5. R. M. Joias, R. N. Tango, J. E. J. de Araujo, M. A. J. de Araujo, G. S. F. A. Saavedra, T. J. A. Paes-Junior, and E. T. Kimpara, J. Prosthet. Dent., 99, 55 (2008)
  6. J. W. J. Silva, L. L. Sousa, R. Z. Nakazato, E. N. Codaro, and H. de Felipe, Mater. Sci. and Appl., 2, 42 (2011).
  7. M. Kuschner, Environ Health Perspect, 40, 101 (1981).
  8. D. L. Tsalve and Z. K. Zaprianov, Environ Health Perspect., 96 (1983).
  9. R. M. De Melo, A. C. Travassos, and M. P. Neisser, J. Prosthet Dent., 93, 64 (2005).
  10. J. C. Wataha, J. Prosthet. Dent., 83, 223 (2000).
  11. J. C. Wataha, N. L. O’Dell, B. B. Singh, M. Ghazi, G. M. Whitford, and P. E. Lockwood, J. Biomed. Mater. Res., 58, 537 (2001).
  12. K. Turan, Materials and Design, 30, 445 (2009).
  13. M. Yamamoto, Metal-Ceramics Principle and methods of Makoto-Yamamoto, Quintessence Publishing Co, 110, 483 (1985).
  14. T. Papadopoulos, A. Tsetsekou, and G. Eliades, Eur. J. Prosthodont Restor. Dent., 7, 15 (1999).
  15. W. F. Smith, Structure and Properties of Engineering Alloys, McGraw-Hill, 2 edition, McGraw-Hill (1993).
  16. S-H. Jung, Ms. Thesis, Gyeongsang National University (2014).
  17. Ja. M. Kolotyrkin, Corrosion, 19, 261 (1963).
  18. J. Horvath and H. H. Uhlig, J. Electrochem. Soc., 115, 791 (1968).
  19. C. M. Wylie, R. M. Shelton, G. J. Fleming and A. Davenport, Dent. Mater., 23, 714 (2007).
  20. S-H. Jeon, H-J. Kim, K-H. Kong, and Y-S. Park, Corros. Sci. Tech., 13, 48 (2014).
  21. J. R. Galvele, J. Electrochem. Soc., 123, 464 (1976).
  22. A case study reported by Metallurgical Technologies, Inc., P.A., Analysis of Cracked Impeller Blade, NC, USA,
  23. A. Eliasson, C. F. Arnelund, and A. Johansson, J. Prosthet Dent., 98, 6 (2007).
  24. H-J. Kim, Ms. Thesis, Catholic University of Pusan (2010).


연구 과제 주관 기관 : 조선대학교