DOI QR코드

DOI QR Code

BOUNDEDNESS IN THE NONLINEAR PERTURBED DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

GOO, YOON HOE

  • Received : 20160200
  • Accepted : 2016.05.13
  • Published : 2016.05.31

Abstract

This paper shows that the solutions to the nonlinear perturbed differential system $y{\prime}=f(t,y)+\int_{t_0}^{t}g(s,y(s),T_1y(s))ds+h(t,y(t),T_2y(t))$, have the bounded property by imposing conditions on the perturbed part $\int_{t_0}^{t}g(s,y(s),T_1y(s))ds,h(t,y(t),T_2y(t))$, and on the fundamental matrix of the unperturbed system y′ = f(t, y) using the notion of h-stability.

Keywords

h-stability;t-similarity;bounded;nonlinear nonautonomous system

References

  1. ______: Lipschitz and asymptotic stability for nonlinear perturbed differential systems. J. Chungcheong Math. Soc. 27 (2014)
  2. V.M. Alekseev: An estimate for the perturbations of the solutions of ordinary differential equations. Vestn. Mosk. Univ. Ser. I. Math. Mekh. 2 (1961), 28-36(Russian).
  3. F. Brauer: Perturbations of nonlinear systems of differential equations. J. Math. Anal. Appl. 14 (1966), 198-206. https://doi.org/10.1016/0022-247X(66)90021-7
  4. S.I. Choi & Y.H. Goo: Boundedness in perturbed nonlinear functional differential systems. J. Chungcheong Math. Soc. 28 (2015), 217-228. https://doi.org/10.14403/jcms.2015.28.2.217
  5. S.K. Choi & H.S. Ryu: h–stability in differential systems. Bull. Inst. Math. Acad. Sinica 21 (1993), 245-262.
  6. S.K. Choi, N.J. Koo & H.S. Ryu: h-stability of differential systems via t-similarity. Bull. Korean. Math. Soc. 34 (1997), 371-383.
  7. R. Conti: Sulla t-similitudine tra matricie l’equivalenza asintotica dei sistemi differenziali lineari. Rivista di Mat. Univ. Parma 8 (1957), 43-47.
  8. Y.H. Goo: Boundedness in the perturbed differential systems. J. Korean Soc. Math. Edu. Ser.B: Pure Appl. Math. 20 (2013), 223-232.
  9. ______: Boundedness in the perturbed nonlinear differential systems. Far East J. Math. Sci(FJMS) 79 (2013), 205-217.
  10. V. Lakshmikantham & S. Leela: Differential and Integral Inequalities: Theory and Applications Vol.. Academic Press, New York and London, 1969.
  11. ______: Boundedness in functional differential systems via t-similarity. J. Chungcheong Math. Soc., submitted.
  12. ______: Uniform Lipschitz stability and asymptotic behavior for perturbed differential systems. Far East J. Math. Sciences 99 (2016), 393-412. https://doi.org/10.17654/MS099030393
  13. G.A. Hewer: Stability properties of the equation by t-similarity. J. Math. Anal. Appl. 41 (1973), 336-344. https://doi.org/10.1016/0022-247X(73)90209-6
  14. B.G. Pachpatte: Stability and asymptotic behavior of perturbed nonlinear systems. J. diff. equations 16 (1974) 14-25. https://doi.org/10.1016/0022-0396(74)90025-4
  15. ______: Perturbations of nonlinear systems of differential equations. J. Math. Anal. Appl. 51 (1975), 550-556. https://doi.org/10.1016/0022-247X(75)90106-7
  16. M. Pinto: Perturbations of asymptotically stable differential systems. Analysis 4 (1984), 161-175.
  17. ______: Stability of nonlinear differential systems. Applicable Analysis 43 (1992), 1-20. https://doi.org/10.1080/00036819208840049