DOI QR코드

DOI QR Code

INITIAL SOFT L-FUZZY PREPROXIMITIES

KIM, YOUNG SUN;KIM, YONG CHAN

  • Received : 2016.03.01
  • Accepted : 2016.04.27
  • Published : 2016.05.31

Abstract

In this paper, we introduce the notions of soft L-fuzzy preproximities in complete residuated lattices. We prove the existence of initial soft L-fuzzy preproximities. From this fact, we define subspaces and product spaces for soft L-fuzzy preproximity spaces. Moreover, we give their examples.

Keywords

complete residuated lattices;(initial) soft L-preproximities;fuzzy proximity soft maps

References

  1. K.V. Babitha & J.J. Sunil: Soft set relations and functions. Compu. Math. Appl. 60(2010), 1840-1849. https://doi.org/10.1016/j.camwa.2010.07.014
  2. N. Caman, S. Karatas & S. Enginoglu: Soft topology. Comput. Math. Appl. 62 (2011), no. 1, 351-358. https://doi.org/10.1016/j.camwa.2011.05.016
  3. D. Čimoka & A.P. Šostak: L-fuzzy syntopogenous structures, Part I: Fundamentals and application to L-fuzzy topologies, L-fuzzy proximities and L-fuzzy uniformities. Fuzzy Sets and Systems 232 (2013), 74-97. https://doi.org/10.1016/j.fss.2013.04.009
  4. F. Feng, X. Liu, V.L. Fotea & Y.B. Jun: Soft sets and soft rough sets. Information Sciences 181 (2011), 1125-1137. https://doi.org/10.1016/j.ins.2010.11.004
  5. _______: Soft L-uniformities and soft L-neighborhood systems. J. Math. Comput. Sci. (to appear).
  6. P. Hájek: Metamathematices of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998).
  7. U. Höhle & S.E. Rodabaugh: Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory. The Handbooks of Fuzzy Sets Series 3, Kluwer Academic Publishers, Boston, 1999.
  8. Y.C. Kim & J.M. Ko: Soft L-topologies and soft L-neighborhood systems. J. Math. Comput. Sci. (to appear).
  9. _______: Soft L-fuzzy quasi-uniformities and soft L-fuzzy topogenous orders. Submit to J. Intelligent and Fuzzy Systems.
  10. R. Lowen: Fuzzy uniform spaces. J. Math. Anal. Appl. 82 (1981), 370-385. https://doi.org/10.1016/0022-247X(81)90202-X
  11. D. Molodtsov: Soft set theory. Comput. Math. Appl. 37 (1999), 19-31.
  12. Z. Pawlak: Rough sets. Int. J. Comput. Inf. Sci. 11 (1982), 341-356. https://doi.org/10.1007/BF01001956
  13. _______: Rough probability. Bull. Pol. Acad. Sci. Math. 32 (1984), 607-615.
  14. A.A. Ramadan, E.H. Elkordy & Y.C. Kim: Perfect L-fuzzy topogenous space, L-fuzzy quasi-proximities and L-fuzzy quasi-uniform spaces. J. Intelligent and Fuzzy Systems 28 (2015), 2591-2604. https://doi.org/10.3233/IFS-151538
  15. M. Shabir & M. Naz: On soft topological spaces. Comput. Math. Appl. 61 (2011), 1786-1799. https://doi.org/10.1016/j.camwa.2011.02.006
  16. B. Tanay & M.B. Kandemir: Topological structure of fuzzy soft sets. Comput. Math. Appl. 61 (2011), no. 10, 2952-2957. https://doi.org/10.1016/j.camwa.2011.03.056
  17. Hu Zhao & Sheng-Gang Li: L-fuzzifying soft topological spaces and L-fuzzifying soft interior operators. Ann. Fuzzy Math. Inform. 5 (2013), no. 3, 493-503. https://doi.org/10.1007/s12543-013-0160-2
  18. Í. Zorlutuna, M. Akdag, W.K. Min & S. Atmaca: Remarks on soft topological spaces. Ann. Fuzzy Math. Inform. 3 (2012), no. 2, 171-185.