BV-2 미세아교세포의 활성에 대한 녹차 유래 폴리페놀 EGCG의 억제 효과

DOI QR코드

DOI QR Code

박으뜸;전홍성
Park, Euteum;Chun, Hong Sung

  • 투고 : 2016.02.05
  • 심사 : 2016.06.02
  • 발행 : 2016.06.30

초록

본 연구에서는 녹차 유래 polyphenol 중의 하나인 epigallocatechine gallate (EGCG)를 이용한 신경염증 억제 효과를 확인하였다. LPS로 유도된 미세아교세포의 활성화로 분비되는 nitric oxide (NO)와 pro-inflammatory cytokine을 포함하여 iNOS, TNF-a와 IL-1b 유전자의 발현과 LPS 수용체인 TLR-4의 활성에 미치는 EGCG의 억제 효능을 확인하였다. Latex beads를 이용한 phagocytotic activity를 확인한 결과 LPS로 유도된 미세아교세포 활성에 의한 식균활성이 EGCG에 의해 억제되는 것을 볼 수 있었다. 뿐만 아니라, BV-2 미세아교세포 조건배지를 이용하여 도파민성 신경세포 SN4741의 세포 사멸확인에서도 EGCG에 의한 보호 효과를 확인하였다. 본 연구 결과는 녹차 유래 polyphenol인 EGCG의 신경염증 반응억제효능과 신경퇴행성 질환 제어 가능성을 확인하였다. 본 연구의 결과는 녹차 유래 polyphenol인 EGCG의 신경염증 반응과 그로 인한 신경 퇴행성 질환 제어 가능성을 제시하였다.

키워드

Cytokine;EGCG (epigallocatechine-3-gallate);inflammation;microglia;phagocytosis

참고문헌

  1. Beutler, B., Du, X. and Poltorak A. 2001. Identification of Toll-like receptor 4 (Tlr4) as the sole conduit for LPS signal transduction: genetic and evolutionary studies. J. Endotoxin Res. 7, 277-280. https://doi.org/10.1177/09680519010070040901
  2. Chen, Z., Jalabi, W., Shpargel, K. B., Farabaugh, K.T., Dutta, R., Yin, X., Kidd, G. J., Bergmann, C. C., Stohlman, S. A. and Trapp, B. D. 2012. Lipopolysaccharide-induced microglial activation and neuroprotection against experimental brain injury is independent of hematogenous TLR4. J. Neurosci. 32, 11706-11715. https://doi.org/10.1523/JNEUROSCI.0730-12.2012
  3. Clement, Y. 2009. Can green tea do that? A literature review of the clinical evidence. Prev. Med. 49, 83-87. https://doi.org/10.1016/j.ypmed.2009.05.005
  4. Collin, M., McGovern, N. and Haniffa, M. 2013. Human dendritic cell subsets. Immunology 140, 22-30. https://doi.org/10.1111/imm.12117
  5. Colton, C. A. 2009. Heterogeneity of microglial activation in the innate immune response in the brain. J. Neuroimmune Pharmacol. 4, 399-418. https://doi.org/10.1007/s11481-009-9164-4
  6. Fuhrmann, M., Bittner, T., Jung, C. K., Burgold, S., Page, RM., Mitteregger, G., Haass, C., LaFerla, F. M., Kretzschmar, H. and Herms, J. 2010. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nat. Neurosci. 13, 411-413. https://doi.org/10.1038/nn.2511
  7. Gonzalez, H., Elgueta, D., Montoya, A. and Pacheco, R. 2014. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J. Neuroimmunol. 274, 1-13. https://doi.org/10.1016/j.jneuroim.2014.07.012
  8. Hirsch, E. C. and Hunot, S. 2009. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 8, 382-387. https://doi.org/10.1016/S1474-4422(09)70062-6
  9. Maetzler, W., Apel, A., Langkamp, M., Deuschle, C., Dilger, S. S. and Stirnkorb, J. G., 2014. Comparable auto antibody serum levels against amyloid-and inflammation-associated proteins In Parkinson’s disease patients and controls. PLoS One 9, 88604. https://doi.org/10.1371/journal.pone.0088604
  10. Kamon, M., Zhao, R. and Sakamoto, K. 2010. Green tea polyphenol (−)-epigallocatechin gallate suppressed the differentiation of murine osteoblastic MC3T3-E1 cells. Cell Biol. Int. 34, 109-416.
  11. Khandelwal, P. J., Herman, A. M. and Moussa, C. E. 2011. Inflammation in the early stages of neurodegenerative pathology. J. Neuroimmunol. 238, 1-11. https://doi.org/10.1016/j.jneuroim.2011.07.002
  12. Li, Y., Du, X. F., Liu, C. S., Wen, Z. L. and Du, J. L. 2012. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev. Cell 23, 1189-1202. https://doi.org/10.1016/j.devcel.2012.10.027
  13. Seija, L. 2010. Innate immunity and neuroinflammation in the CNS: The role of microglia in toll-like receptor- mediated neuronal injury. GLIA 58, 253-263.
  14. Shenouda, S. M. and Vita, J. A. 2007. Effects of flavonoidcontaining beverages and EGCG on endothelial function. J. Am. Coll. Nutr. 26, 366-372. https://doi.org/10.1080/07315724.2007.10719625
  15. Singh, B. N., Shankar, S. and Srivastava, R. K. 2010. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem. Pharmacol. 82, 1807-1821.
  16. Takeuchi, H., Mizoguchi, H., Doi, Y., Jin, S., Noda, M., Liang, J., Li, H., Zhou, Y., Mori, R., Yasuoka, S., Li, E., Parajuli, B., Kawanokuchi, J., Sonobe, Y., Sato, J., Yamanaka, K., Sobue, G., Mizuno, T. and Suzumura, A. 2011. Blockade of gap junction hemichanel suppresses disease progression in mouse models of amyotrophic lateral sclerosis and Alzheimer’s disease. PLoS One 6, 21108. https://doi.org/10.1371/journal.pone.0021108
  17. Whitney, N. P., Eidem, T. M., Peng, H., Huang, Y. and Zheng, J. C. 2009. Inflammation mediates varying effects in neurogenesis: Relevance to the pathogenesis of brain injury and neurodegenerative disorders. J. Neurochem. 108, 1343-1359. https://doi.org/10.1111/j.1471-4159.2009.05886.x
  18. Wilms, H., Rosenstiel, P., Sievers, J., Deuschl, G., Zecca, L. and Lucius, R. 2003. Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. FASEB J. 17, 500-507.
  19. Zecca, L., Wilms, H., Geick, S., Claasen, J. H., Brandenburg, L. O. and Holzknecht, C. 2008. Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: implications for Parkinson’s disease. Acta Neuropathol. 116, 47-55. https://doi.org/10.1007/s00401-008-0361-7

피인용 문헌

  1. 1. Inhibitory effect ofPetalonia binghamiaeon neuroinflammation in LPS-stimulated microglial cells vol.50, pp.1, 2017, doi:10.5352/JLS.2016.26.6.640