유암 처방에 사용되어온 한약재 복합 처방전의 항산화 및 항균활성에 관한 연구

DOI QR코드

DOI QR Code

최은옥;손다희;김민영;황보현;김홍재;정진우;홍수현;박철;최영현
Choi, Eun-Ok;Son, Da Hee;Kim, Min Young;Hwang-Bo, Hyun;Kim, Hong Jae;Jeong, Jin-Woo;Hong, Su Hyun;Park, Cheol;Choi, Yung Hyun

  • 투고 : 2016.04.18
  • 심사 : 2016.06.22
  • 발행 : 2016.06.30

초록

본 연구에서 동의보감에 기록된 유암 치료에 사용되어온 5가지 한약재 처방전인 십육미류기음, 단자청피탕, 지패산 Ⅰ, 지패산 Ⅱ와 청간해울탕의 열수와 에탄올 추출물에 대한 총 페놀 함량의 비교 분석과 항산화능 및 항균활성능을 비교 조사하였다. 열수와 70% 에탄올 추출물의 수율은 각각 지패산 Ⅱ와 단자청피탕이 가장 높았으며, 총 페놀 함량은 다른 한약재에 비해 단자청피탕이 가장 높았다. 열수 추출물의 총 페놀 함량은 지패산 Ⅰ < 청간해울탕 < 지패산 Ⅱ < 십육미류기음 < 단자청피탕 순으로 높게 나타났다. 70% 에탄올 추출물의 총 페놀 함량은지패산 Ⅱ < 지패산 Ⅰ < 청간해울탕 < 십육미류기음 < 단자청피탕 순으로 풍부하였다. 그 중 단자청피탕과 십육미류기음의 환원력과 DPPH radical과 ABTS radical 소거능이 가장 뛰어났으며, 이들 시료의 총 페놀 함량과 그들의 항산화능과의 밀접한 상관도가 관찰되었다. 또한 Staphylococcus aureus 및 Escherichia coli에 대한 항균활성은 열수보다 70% 에탄올 추출물에서 효과가 높게 관찰되었다. 결론적으로 유암의 치료에 사용되었던 조사 대상 한약재 처방전은 항산화와 항균 활성은 그들의 총 페놀 함유량과 연관성이 높았으며, 본 연구의 결과는 각 처방전에 대한 구체적인 생리활성 비교를 위한 자료로서 활용될 것이다.

키워드

Antimicrobial activity;antioxidant activity;total phenolic contents;traditional herb-combined remedies

참고문헌

  1. Benzie, I. F. and Strain, J. J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal. Biochem. 239, 70-76. https://doi.org/10.1006/abio.1996.0292
  2. Akkol, E. K., Das, S., Sarker, S. D. and Nahar, L. 2012. The treatment of inflammation, pain, and fever using medicinal plants. Adv. Pharmacol. Sci. 2012, 476985.
  3. Bae, J. H., Park, H. K. and Bae, H. J. 2005. Antimicrobial effect of Citrus unshiu Markovich extracts on food-borne pathogens. Kor. J. Food Cookery Sci. 21, 40-46.
  4. Barrera, G., Gentile, F., Pizzimenti, S., Canuto, R. A., Daga, M., Arcaro, A., Cetrangolo, G. P., Lepore, A., Ferretti, C., Dianzani, C. and Muzio, G. 2016. Mitochondrial dysfunction in cancer and neurodegenerative diseases: Spotlight on fatty acid oxidation and lipoperoxidation products. Antioxidants (Basel) 5, pii: E7. https://doi.org/10.3390/antiox5010007
  5. Borisover, M., Reddy, M. and Graber, E. R. 2001. Solvation effect on organic compound interactions in soil organic matter. Environ. Sci. Technol. 35, 2518-2524. https://doi.org/10.1021/es001810d
  6. Choi, I. J., Cho, Y. and Lim, S. C. 2006. Antimicrobial activity of medicinal herbs against Staphylococcus aureus. Kor. J. Plant Res. 19, 491-496.
  7. Cicerale, S., Lucas, L. J. and Keast, R. S. 2012. Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr. Opin. Biotechnol. 23, 129-135. https://doi.org/10.1016/j.copbio.2011.09.006
  8. Fernandes, A., Fernandes, I., Cruz, L., Mateus, N., Cabral, M. and de Freitas, V. 2009. Antioxidant and biological properties of bioactive phenolic compounds from Quercus suber L. J. Agric. Food Chem. 57, 11154-11160. https://doi.org/10.1021/jf902093m
  9. Cui, X., Trinh, K. and Wang, Y. J. 2010. Chinese herbal medicine for chronic neck pain due to cervical degenerative disc disease. Cochrane Database Syst. Rev. 20, CD006556.
  10. Deghrigue, M., Dellai, A., Akremi, N., Le Morvan, V., Robert, J. and Bouraoui, A. 2013. Evaluation of antiproliferative and antioxidant activities of the organic extract and its polar fractions from the Mediterranean gorgonian Eunicella singularis. Environ. Toxicol. Pharmacol. 36, 339-346. https://doi.org/10.1016/j.etap.2013.04.014
  11. Dhankhar, S., Dhankhar, S., Kumar, M., Ruhil, S., Balhara, M. and Chhillar, A. K. 2012. Analysis toward innovative herbal antibacterial and antifungal drugs. Recent Pat. Antiinfect. Drug Discov. 7, 242-248. https://doi.org/10.2174/157489112803521931
  12. Gülçin, İ. 2012. Antioxidant activity of food constituents: an overview. Arch. Toxicol. 86, 345-391. https://doi.org/10.1007/s00204-011-0774-2
  13. Guo, X. Y., Wang, J., Wang, N. L., Kitanaka, S. and Yao, X. S. 2007. 9, 10-Dihydrophenanthrene derivatives from Pholidota yunnanensis and scavenging activity on DPPH free radical. J. Asian Nat. Prod. Res. 9, 165-174. https://doi.org/10.1080/10286020500480522
  14. Heo, J. 1999. Donguibogam, pp. 689-692. In: Translated Edition by a Committee for Translation, Bupin Publishes, Seoul, Republic of Korea.
  15. Heo, S. J., Hwang, D. S., Lee, J. M., Lee, C. H., Lee, K. S. and Jang, J. B. 2014. Antimetastatic effects of Jipae-san by inflammation control and activation of innate immune system. J. Kor. Obstet. Gynecol. 27, 1-14.
  16. Hess, J. A. and Khasawneh, M. K. 2015. Cancer metabolism and oxidative stress: Insights into carcinogenesis and chemotherapy via the non-dihydrofolate reductase effects of methotrexate. BBA Clin. 3, 152-161. https://doi.org/10.1016/j.bbacli.2015.01.006
  17. Kaur, R., Kaur, J., Mahajan, J., Kumar, R. and Arora, S. 2014. Oxidative stress - implications, source and its prevention. Environ. Sci. Pollut. Res. Int. 21, 1599-1613. https://doi.org/10.1007/s11356-013-2251-3
  18. Hindle, A. G., Lawler, J. M., Campbell, K. L. and Horning, M. 2010. Muscle aging and oxidative stress in wild-caught shrews. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 155, 427-434. https://doi.org/10.1016/j.cbpb.2010.01.007
  19. Hosseinimehr, S. J. 2010. Flavonoids and genomic instability induced by ionizing radiation. Drug Discov. Today 15, 907-918. https://doi.org/10.1016/j.drudis.2010.09.005
  20. Kalinowska, M., Bazdar, D. A., Lederman, M. M., Funderburg, N. and Sieg, S. F. 2013. Decreased IL-7 responsiveness is related to oxidative stress in HIV disease. PLoS One 8, e58764. https://doi.org/10.1371/journal.pone.0058764
  21. Kedare, S. B. and Singh, R. P. 2011. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 48, 412-422. https://doi.org/10.1007/s13197-011-0251-1
  22. Kim, G. H., Kim, J. E., Rhie, S. J. and Yoon, S. 2015. The role of oxidative stress in neurodegenerative diseases. Exp. Neurobiol. 24, 325-340. https://doi.org/10.5607/en.2015.24.4.325
  23. Lee, M. H., Lee, J. W., Park, C., Han, M. H., Hong, S. H. and Choi, Y. H. 2015. Antioxidant, antimicrobial and anticancer properties of seven traditional herb-combined remedies. J. Life Sci. 25, 406-415. https://doi.org/10.5352/JLS.2015.25.4.406
  24. Lee, S. H. and Park, C. K. 2008. Anti-inflammatory effects of Ji-Pae-San water extract. Kor. J. Ori. Med. Prescrip. 16, 79-94.
  25. Loizzo, M. R., Bonesi, M., Di Lecce, G., Boselli, E., Tundis, R., Pugliese, A., Menichini, F. and Frega, N. G. 2013. Phenolics, aroma profile, and in vitro antioxidant activity of Italian dessert passito wine from Saracena (Italy). J. Food Sci. 78, C703-708. https://doi.org/10.1111/1750-3841.12110
  26. Lopes, A. C., Peixe, T. S., Mesas, A. E. and Paoliello, M. M. 2016. Lead exposure and oxidative stress: A systematic review. Rev. Environ. Contam. Toxicol. 236, 193-238.
  27. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  28. Mileo, A. M. and Miccadei, S. 2016. Polyphenols as modulator of oxidative stress in cancer disease: New therapeutic strategies. Oxid. Med. Cell. Longev. 2016, 6475624.
  29. Milne, L., Nicotera, P., Orrenius, S. and Burkitt, M. J. 1993. Effects of glutathione and chelating agents on copper-mediated DNA oxidation: pro-oxidant and antioxidant properties of glutathione. Arch. Biochem. Biophys. 304, 102-109. https://doi.org/10.1006/abbi.1993.1327
  30. Park, H. J., Kang, S. A., Lee, J. Y. and Cho, Y. J. 2012. Antioxidant activities of extracts from medicinal plants. Kor. J. Food Preserv. 19, 744-750. https://doi.org/10.11002/kjfp.2012.19.5.744
  31. Reis, J. S., Amaral, C. A., Volpe, C. M., Fernandes, J. S., Borges, E. A., Isoni, C. A., Anjos, P. M. and Machado, J. A. 2012. Oxidative stress and interleukin-6 secretion during the progression of type 1 diabetes. Arq. Bras. Endocrinol. Metabol. 56, 441-448. https://doi.org/10.1590/S0004-27302012000700006
  32. Saha, P. and Das, S. 2003. Regulation of hazardous exposure by protective exposure: modulation of phase II detoxification and lipid peroxidation by Camellia sinensis and Swertia chirata. Teratog. Carcinog. Mutagen. 2003 (Suppl 1), 313-322.
  33. Santos, S. A., Freire, C. S., Domingues, M. R., Silvestre, A. J. and Pascoal Neto, C. 2011. Characterization of phenolic components in polar extracts of Eucalyptus globulus Labill. bark by high-performance liquid chromatography-mass spectrometry. J. Agric. Food Chem. 59, 9386-9393. https://doi.org/10.1021/jf201801q
  34. Servili, M., Sordini, B., Esposto, S., Urbani, S., Veneziani, G., Di Maio, I., Selvaggini, R. and Taticchi, A. 2013. Biological activities of phenolic compounds of extra virgin olive oil. Antioxidants (Basel) 3, 1-23. https://doi.org/10.3390/antiox3010001
  35. Uzasci, L., Nath, A. and Cotter, R. 2013. Oxidative stress and the HIV-infected brain proteome. J. Neuroimmune Pharmacol. 8, 1167-1180. https://doi.org/10.1007/s11481-013-9444-x
  36. Slimen, I. B., Najar, T., Ghram, A., Dabbebi, H., Ben Mrad, M. and Abdrabbah, M. 2014. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int. J. Hyperthermia 30, 513-523. https://doi.org/10.3109/02656736.2014.971446
  37. Slupphaug, G., Kavli, B. and Krokan, H. E. 200. The interacting pathways for prevention and repair of oxidative DNA damage. Mutat. Res. 531, 231-251. https://doi.org/10.1016/j.mrfmmm.2003.06.002
  38. Suh, J. M. and Ryu, D. N. 1997. Effect of Chungkan-Haewul-Tang on anti-inflammatory analgesec action, immunocytes and MCF-7 cells. J. Kor. Obstet. Gynecol. 10, 69-83.
  39. Xu, X., Li, W., Lu, Z., Beta, T. and Hydamaka, A. W. 2009. Phenolic content, composition, antioxidant activity, and their changes during domestic cooking of potatoes. J. Agric. Food Chem. 57, 10231-10238. https://doi.org/10.1021/jf902532q
  40. Yang, J. H. and Lee, N. H. 2004. Skin permeation and anti-inflammatory effects of hydrolyzed products of Gardeniae fructus extracts. J. Kor. Pharm. Sci. 34, 115-123.
  41. Zhu, Y. Z., Huang, S. H., Tan, B. K., Sun, J., Whiteman, M. and Zhu, Y. C. 2004. Antioxidants in Chinese herbal medicines: a biochemical perspective. Nat. Prod. Rep. 21, 478-489. https://doi.org/10.1039/b304821g