유전자 보유 계통수를 이용한 원핵생물 680종의 분석

DOI QR코드

DOI QR Code

이동근;이상현
Lee, Dong-Geun;Lee, Sang-Hyeon

  • 투고 : 2016.02.12
  • 심사 : 2016.05.10
  • 발행 : 2016.06.30

초록

게놈분석이 완료된 680개의 세균의 공통 유전자 보유 정도와 유연관계를 파악하기 위해 4,631개의 COG (Clusters of Orthologous Groups of protein) 보유 유사도와 COG 보유 계통수를 작성하여 다음과 같은 결과를 얻었다. 균주별 COG 보유개수는 103~2,199개 사이였고 평균 1377.1개 였다. 곤충과 절대공생성인 Candidatus Nasuia deltocephalinicola str. NAS-ALF가 최저였고 기회성병원균인 Pseudomonas aeruginosa PAO1가 최대였다. 2개의 세균들 사이에 나타내는 COG 보유 유무의 유사도는 49.30~99.78% 사이였고 평균 72.65%였다. 초고온성이며 자가영양생활을 하는 Methanocaldococcus jannaschii DSM 2661과 중온성이며 공생생활을 하는 Mesorhizobium loti MAFF303099 사이가 최소였다. 유전자 보유 정도가 생물이 각 서식지에 적응하는 정도를 나타내므로 이 결과는 원핵생물 진화의 역사 혹은 현재 지구의 원핵생물 서식지 범위를 나타내는 것일 수도 있다. COG 보유계통수를 통하여 첫째 진정세균인 Chloroflexi문의 일부는 진정세균보다 고세균과 유연관계가 높았고, 둘째 16S rRNA유전자에서 동일한 문(phylum)이나 강(class)으로 분류되지만 COG 보유 계통수에서는 일치하지 않는 경우가 많았으며, 셋째 delta-와 epsilon-Proteobacteria는 다른 Proteobacteria와 다른 분계(lineage)를 이루었다. 본 연구결과는 생물의 기원 파악과 기능적 연관성 파악 그리고 유용유전자 탐색 등에 이용할 수 있을 것이다.

키워드

COG (Clusters of Orthologous Groups of protein);gene content tree;maximum likelihood;neighbor-joining

참고문헌

  1. Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. and Doolittle, W. F. 2000. A kingdom level phylogeny of eukaryotes based on combined protein data. Science 290, 972-977. https://doi.org/10.1126/science.290.5493.972
  2. Baum, D. 2008. Reading a phylogenetic tree: The meaning of monophyletic groups. Nat. Edu. 1, 190.
  3. Chaffron, S., Rehrauer, H., Pernthaler, J. and von Mering, C. 2010. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 20, 947-959. https://doi.org/10.1101/gr.104521.109
  4. Bennett, G. M. and Moran, N. A. 2013. Small, smaller, smallest: the origins and evolution of ancient dual symbioses in a Phloem-feeding insect. Genome Biol. Evol. 5, 1675-1688. https://doi.org/10.1093/gbe/evt118
  5. Boeckmann, B., Marcet-Houben, M., Rees, J. A., Forslund, K., Huerta-Cepas, J., Muffato, M., Yilmaz, P., Xenarios, I., Bork, P., Lewis, S. E. and Gabaldón, T. 2015. Quest for orthologs entails quest for tree of life: In search of the gene stream. Genome Biol. Evol. 7, 1988-1999. https://doi.org/10.1093/gbe/evv121
  6. Bos, D. H. and Posada, D. 2005. Using models of nucleotide evolution to build phylogenetic trees. Dev. Comp. Immunol. 29, 211-227. https://doi.org/10.1016/j.dci.2004.07.007
  7. Chung, Y. and Ané, C. 2011. Comparing two Bayesian methods for gene tree/species tree reconstruction: simulations with incomplete lineage sorting and horizontal gene transfer. Syst. Biol. 60, 261-275. https://doi.org/10.1093/sysbio/syr003
  8. Dutilh, B. E., Huynen, M. A., Bruno, W. J. and Snel, B. 2004. The consistent phylogenetic signal in genome trees revealed by reducing the impact of noise. J. Mol. Evol. 58, 527-539. https://doi.org/10.1007/s00239-003-2575-6
  9. ftp://ftp.ncbi.nih.gov/pub/COG/COG2014/data
  10. Galperin, M. Y., Makarova, K. S., Wolf, Y. I. and Koonin, E. V. 2015. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43, D261-D269. https://doi.org/10.1093/nar/gku1223
  11. Guo, J., Ran, H., Zeng, J., Liu, D. and Xin, Z. 2016. Tafuketide, a phylogeny-guided discovery of a new polyketide from Talaromyces funiculosus Salicorn 58. Appl. Microbiol. Biotechnol. in press.
  12. Horz, H. P. and Conrads, G. 2010. The discussion goes on: What is the role of euryarchaeota in humans? Archaea 2010, 967271
  13. Klockgether, J., Munder, A., Neugebauer, J., Davenport, C. F., Stanke, F., Larbig, K. D., Heeb, S., Schöck, U., Pohl, T. M., Wiehlmann, L. and Tümmler, B. 2010. Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains. J. Bacteriol. 192, 1113-1121. https://doi.org/10.1128/JB.01515-09
  14. http://microbes.ucsc.edu/cgi-bin/hgGateway?db=methJann1
  15. http://www.ncbi.nlm.nih.gov/taxonomy/?term=Bacteroidetes/ Chlorobi%20group
  16. Jahn, U., Huber, H., Eisenreich, W., Hugler, M. and Fuchs, G. 2007. Insights into the autotrophic CO2 fixation pathway of the archaeon Ignicoccus hospitalis: comprehensive analysis of the central carbon metabolism. J. Bacteriol. 189, 4108-4119. https://doi.org/10.1128/JB.00047-07
  17. Lang, J. M., Darling, A. E. and Eisen, J. A. 2013. Phylogeny of bacterial and archaeal genomes using conserved genes: supertrees and supermatrices. PLoS One 8, e62510. https://doi.org/10.1371/journal.pone.0062510
  18. Langille, M. G., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., Clemente, J. C., Burkepile, D. E., Vega Thurber, R. L., Knight, R., Beiko, R. G. and Huttenhower, C. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814-821. https://doi.org/10.1038/nbt.2676
  19. Lee, D. G., Kang, H. Y., Kim, S. H., Lee, S. H., Kim, C. M., Kim, S. J. and Lee, J. H. 2003. Classification of archaebacteria and bacteria using a gene content tree approach. KSBB J. 18, 39-44
  20. Lee, D. G., Lee, J. H., Lee, S. H., Ha, B. J., Kim, C. M., Shim, D. H., Park, E. K., Kim, J. W., Li, H. Y., Nam, C. S., Kim, N. Y., Lee, E. J., Back, J. W. and Ha, J. M. 2005. Investigation of conserved genes in microorganism. J. Life Sci. 15, 261-266. https://doi.org/10.5352/JLS.2005.15.2.261
  21. Lee, D. G. and Lee, S. H. 2015. Investigation of conservative genes in 711 prokaryotes. J. Life Sci. 25, 1007-1013. https://doi.org/10.5352/JLS.2015.25.9.1007
  22. Mukherjee, K., Bowman, K. S., Rainey, F. A., Siddaramappa, S., Challacombe, J. F. and Moe, W. M. 2014. Dehalogenimonas lykanthroporepellens BL-DC-9T simultaneously transcribes many rdhA genes during organohalide respiration with 1,2-DCA, 1,2-DCP, and 1,2,3-TCP as electron acceptors. FEMS Microbiol. Lett. 354, 111-118. https://doi.org/10.1111/1574-6968.12434
  23. Lienau, E. K., DeSalle, R., Rosenfeld, J. A. and Planet, P. J. 2006. Reciprocal illumination in the gene content tree of life. Syst. Biol. 55, 441-453. https://doi.org/10.1080/10635150600697416
  24. Löffler, F. E., Yan, J., Ritalahti, K. M., Adrian, L., Edwards, E. A., Konstantinidis, K. T., Müller, J. A., Fullerton, H., Zinder, S. H. and Spormann, A. M. 2013. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int. J. Syst. Evol. Microbiol. 63, 625-635. https://doi.org/10.1099/ijs.0.034926-0
  25. Ludwig, W. and Klenk, H. P. 2000. Overview: A phylogenetic backbone and taxonomic framework for procaryotic systematics. pp. 49-65. In Boone, D. R., Castenholz, R. W. and Garrity, G. M. (eds.) Bergey's Manual of Systematic Bacteriology Volume 1. 2nd edition. Springer-Verlag , NY.
  26. Rajendhran, J. and Gunasekaran, P. 2011. Microbial phylogeny and diversity: Small subunit ribosomal RNA sequence analysis and beyond. Microbiol. Res. 166, 99-110. https://doi.org/10.1016/j.micres.2010.02.003
  27. Salichos, L. and Rokas, A. 2013. Inferring ancient divergences requires genes with strong phylogenetic signals. Nature 497, 327-331. https://doi.org/10.1038/nature12130
  28. Shi T. 2016. Impact of gene family evolutionary histories on phylogenetic species tree inference by gene tree parsimony. Mol. Phylogenet. Evol. 96, 9-16. https://doi.org/10.1016/j.ympev.2015.12.002
  29. Szöllősi, G. J., Tannier, E., Daubin, V. and Boussau, B. 2015. The inference of gene trees with species trees. Syst. Biol. 64, e42-e62. https://doi.org/10.1093/sysbio/syu048
  30. Tank, M. and Bryant, D. A. 2015. Chloracidobacterium thermophilum gen. nov., sp. nov.: an anoxygenic microaerophilic chlorophotoheterotrophic acidobacterium. Int. J. Syst. Evol. Microbiol. 65, 1426-1430. https://doi.org/10.1099/ijs.0.000113
  31. Tian, J., Chen, H., Guo, Z., Liu, N., Li, J., Huang, Y., Xiang, W. and Chen, Y. 2016. Discovery of pentangular polyphenols hexaricins A-C from marine Streptosporangium sp. CGMCC 4.7309 by genome mining. Appl. Microbiol. Biotechnol. in press.
  32. Wagner, M. and Horn, M. 2006. The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr. Opin. Biotechnol. 17, 241-249. https://doi.org/10.1016/j.copbio.2006.05.005
  33. Walter, J. and Ley, R. 2011. The human gut microbiome: Ecology and recent evolutionary changes. Annu. Rev. Microbiol. 65, 411-429. https://doi.org/10.1146/annurev-micro-090110-102830
  34. Zheng, J., Zhao, X., Lin, X. B. and Gänzle, M. 2015. Comparative genomics Lactobacillus reuteri from sourdough reveals adaptation of an intestinal symbiont to food fermentations. Sci. Rep. 5, 18234. https://doi.org/10.1038/srep18234