DOI QR코드

DOI QR Code

Allelic Gene Interaction and Anthocyanin Biosynthesis of Purple Pericarp Trait for Yield Improvement in Black Rice

흑미의 자색종자과피 형질을 결정하는 대립유전자와 안토시아닌 생성의 상호관계

Rahman, Md Mominur;Lee, Kyung Eun;Kang, Sang Gu
라만 모하마드 모미너;이경은;강상구

  • Received : 2016.05.04
  • Accepted : 2016.06.14
  • Published : 2016.06.30

Abstract

Rice (Oryza sativa L.) is one of the major cereal crops for consumption by the world’s population. Recently, various colored rice, such as white, red, brown, green, and black rice, have caught the attention of world consumers. The commercial name ‘black rice’ contains a high amount of anthocyanins in pericarp, which increases nutritional value. Moreover, anthocyanin in black rice possesses biomedical properties, including anti-oxidant, anti-cancer, and anti-inflammatory effects in humans. In genetics, black rice has a dominant PURPLE PERICARP (Prp) trait governed by two genes, Pb and Pp, which are involved in the synthesis of cyanidin-3-O-glucoside (C3G). Since the publication of a report by Nagai at 1921, the genetics and physiological studies of black rice driven by Prp traits are still unable to understand the relevant genes and their roles. However, with the increased demand for anthocyanin-rich black rice as a functional food for human health, it has become urgent to develop highyielding anthocyanin-rich varieties of rice. We explored many years in the genetics of purple pericarp trait, anthocyanin biosynthesis in pericarp during seed development, and, consequently, their products in relation to different physiological and agronomic traits. In this review, we summarized the anthocyanin biosynthesis in pericarp, emphasizing the inheritance pattern of the trait and functions of their products on different physiological and agronomic traits, including the yield of black rice.

Keywords

Anthocyanin;black rice;complementation gene;cyanidin-3-O-glucoside;purple pericarp

References

  1. Abdel-Aal, E. S. M., Young, J. C. and Rabalski, I. 2006. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J. Agric. Food Chem. 54, 4696-4704. https://doi.org/10.1021/jf0606609
  2. Carey, C. C., Strahle, J. T., Selinger, D. A. and Chandler, V. 2004. Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway has distinct phenotype relative to the functionally similar Transparent Testa Glabra1 gene in Arabidopsis thaliana. Plant Cell 16, 450-464. https://doi.org/10.1105/tpc.018796
  3. Chandler, V. L., Radicella, J. P., Robbins, T. P., Chen, J. and Turks, D. 1989. Two regulatory genes of the maize anthocyanin pathway are homologous: isolation of b utilizing r genomic sequences. Plant Cell 1, 1175-1183. https://doi.org/10.1105/tpc.1.12.1175
  4. Dobrovolskaya, O. B., Arbuzova, V. S., Lohwasser, U., Roder, M. S. and Borner, A. 2006. Microsatellite mapping of complementary genes for purple grain colour in bread wheat (Triticum aestivum L.). Euphytica 150, 355-364. https://doi.org/10.1007/s10681-006-9122-7
  5. Chu, S. H., Lee, H. H., Ryu, S. N. and Koh, H. J. 2004. Grain characteristics and inheritance of green kerneled rice (Oryza sativa L.). Kor. J. Breed. 36, 222-228.
  6. Cone, K. C., Cocciolone, S. M., Burr, F. A. and Burr, B. 1993. Maize anthocyanin regulatory gene pl is a duplicate of c1 that functions in the plant. Plant Cell 5, 1795-1805. https://doi.org/10.1105/tpc.5.12.1795
  7. Dedio, W., Hill, R. D. and Evans, L. E. 1972. Anthocyanins in the pericarp and coleoptiles of purple wheat. Can. J. Plant Sci. 52, 977-980. https://doi.org/10.4141/cjps72-167
  8. Druka, A., Kudrna, D., Rpstoks, N., Brueggeman, R., von Wettstein, D. and Kleinhofs, A. 2003. Chalcone synthase gene from rice (Oryza sativa) and barley (Hordeum vulgare): physical, genetic and mutation mapping. Gene 302, 171-178. https://doi.org/10.1016/S0378-1119(02)01105-8
  9. Furukawa, T., Maekawa, M., Oki, T., Suda, I., Iida, S., Shimada, H., Takamure, I. and Kadowaki, K. 2006. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. Plant J. 49, 91-102. https://doi.org/10.1111/j.1365-313X.2006.02958.x
  10. Hichri, I., Barrieu, F., Bogs, J., Kappel, C., Delrot, S. and Lauvergeat, V. 2011. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J. Exp. Bot. 62, 2465-2483. https://doi.org/10.1093/jxb/erq442
  11. Holton, T. A. and Cornish, E. C. 1995. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7, 1071-1083. https://doi.org/10.1105/tpc.7.7.1071
  12. Nagai, I. 1921. A genetico-physiological study on the formation of anthocyanin and brown pigments in plants. Tokyo Univ. College Agric. J. 8, 1-92.
  13. Ji, Z. U., Wang, X. G., Zeng, Y. X., Ma, L. Y., Li, X. M., Liu, B. X. and Yang, C. D. 2012. Comparison of physiological and yield traits between purple and white pericarp rice using SLs. Breed. Sci. 62, 71-77. https://doi.org/10.1270/jsbbs.62.71
  14. Hsieh, S. C. and Chang, T. M. 1964. Genic analysis in rice. IV. Genes for purple pericarp and other characters. Japan J. Breed. 14, 141-149. https://doi.org/10.1270/jsbbs1951.14.141
  15. Hu, J., Anderson, B. and Wessler, S. R. 1996. Isolation and characterization of rice R genes: evidence for distinct evolutionary paths in rice and maize. Genetics 142, 1021-1031.
  16. Hyun, J. W. and Chung, H. S. 2004. Cyanidin and malvidin from Oryza sativa cv. Heugjinjubyeo mediate cytotoxicity against human monocytic leukemia cells by arrest of G2/M phase and induction of apoptosis. J. Agric. Food Chem. 52, 2213-2217. https://doi.org/10.1021/jf030370h
  17. Kang, S. G., Pandeya, D., Kim, S. S. and Suh, H. S. 2006. Morphological characters of panicle and seed mutants of rice. Kor. J. Crop Sci. 51, 348-355.
  18. Kato, H. and Ishikawa, J. 1921. On the inheritance of pigment of rice. Japan J. Genet. (Supp. 1) 1-7.
  19. Kim, B. G., Kim, J. H., Min, S. Y., Shin, K. H., Kim, J. H., Kim, H. Y., Ryu, S. N. and Ahn, J. H. 2007. Anthocyanin content in rice is related to expression level of anthocyanin biosynthetic genes. J. Plant Biol. 50, 156-160. https://doi.org/10.1007/BF03030624
  20. Kim, J. H., Lee, Y. J., Kim, B. G., Lim, Y. and Ahn, J. H. 2008. Flavanone 3-beta-hydroxylases from rice: key enzymes for favonol and anthocyanin biosynthesis. Mol. Cells 25, 312-316.
  21. Koes, R., Verweij, W. and Quattrocchio, F. 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 10, 236-242. https://doi.org/10.1016/j.tplants.2005.03.002
  22. Matin, M. N. and Kang, S. G. 2010. Morphological characteristics of the rice (Oryza sativa L.) with red pigmentation. J. Life. Sci. 20, 22-26. https://doi.org/10.5352/JLS.2010.20.1.022
  23. Lee, J. H. 2010. Identification and quantification of anthocyanins from the grains of black rice (Oryza sativa L.) varieties. Food Sci. Biotechnol. 19, 391-397. https://doi.org/10.1007/s10068-010-0055-5
  24. Liu, J. P., Ouyang, L. and Li, J. N. 1998. The preliminary report on the breeding of three-1ines for black rice. Jiangxi Agril. Sci. Technol. 2, 7-9.
  25. Maeda, H., Yamaguchi, T., Omoteno, M., Takarada, T., Fujita, K., Murata, K., Iyama, Y., Kojima, Y., Morikawa, M., Ozaki, H., Mukaino, N., Kidani, Y. and Ebitani, T. 2014. Genetic dissection of black grain rice by the development of a near isogenic line. Breed. Sci. 64, 134-41. https://doi.org/10.1270/jsbbs.64.134
  26. Min, B., McClung, A. M. and Chen, M. H. 2011. Phytochemicals and antioxidant capacities in rice brans of different color. J. Food Sci. 76, 117-126. https://doi.org/10.1111/j.1750-3841.2010.01929.x
  27. Momose, T. and Ozeki, Y. 2013. Regulatory effect of stems on sucrose-induced chlorophyll degradation and anthocyanin synthesis in Egeria densa leaves. J. Plant Res. 126, 859-867. https://doi.org/10.1007/s10265-013-0581-3
  28. Nagao, S. and Takahashi, M. 1963. Trial construction of twelve linkage groups in Japanese rice. J. Fac. Agri. Hokkaido Univ. 53, 76-131.
  29. Nam, S. H., Choi, S. P., Kang, M. Y., Koh, H. J., Kozukue, N. and Friedman, M. 2006. Antioxidative activities of bran from twenty one pigmented rice cultivars. Food Chem. 94, 613-620. https://doi.org/10.1016/j.foodchem.2004.12.010
  30. Oikawa, T., Maeda, H., Oguchi, T., Yamaguchi, T., Tanabe, N., Ebana, K., Yano, M., Ebitani, T. and Izawa, T. 2015. The birth of a black rice gene and its local spread by introgression. Plant Cell 27, 2401-2414. https://doi.org/10.1105/tpc.15.00310
  31. Rahman, M. M., Lee, K, E., Lee, E. S., Matin, M. N., Lee, D. S., Yun, J. S., Kim, J. B. and Kang, S. G. 2013. The genetic constitutions of complementary genes Pp and Pb determine the purple color variation in pericarps with cyanidin-3-0-glucoside depositions in black rice. J. Plant Biol. 56, 24-31. https://doi.org/10.1007/s12374-012-0043-9
  32. Peng, Z. M., Zhang, M. W. and Tu, J. M. 2004. Breeding and nutrient evaluation on three-lines and their combination of indica black glutinous rice hybrid. Acta Agronomica Sinica 30, 342-347.
  33. Petroni, K. and Tonelli, C. 2011. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci. 181, 219-229. https://doi.org/10.1016/j.plantsci.2011.05.009
  34. Rahman, M. M., Lee, K. E. and Kang, S. G. 2015. Studies on the effects of pericarp pigmentation on grain development and yield of black rice. Indian J. Genet. 75, 426-433.
  35. Reddy, A. M., Reddy, V. S., Schezer, B. E., Wienand, U. and Reddy, A. R. 2007. Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential. Metab. Eng. 9, 95-111. https://doi.org/10.1016/j.ymben.2006.09.003
  36. Reddy, A. R., ScheZer, B. E., Nadhuri, G., Srivastava, M. N., Kumar, A., Sathyanarayanan, P. V., Nair, S. and Mohan, M. 1996. Chalcone synthase in rice (Oryza sativa L.): detection of the CHS protein in seedlings and molecular mapping of the chs locus. Plant Mol. Biol. 32, 735-743. https://doi.org/10.1007/BF00020214
  37. Reddy, V. S., Dash, S. and Reddy, A. R. 1995. Anthocyanin pathway in rice (Oryza sativa L.): identification of a mutant showing dominant inhibition of anthocyanins in leaf and accumulation of proanthocyanidins in pericarps. Theor. Appl. Genet. 91, 301-312.
  38. Ryu, S. N., Park, S. Z. and Ho, C. T. 1998. High performances liquid chromatographic determination of anthocyanin pigments in some varieties of black rice. J. Food Drug Anal. 6, 1710-1715.
  39. Takahashi, M. E.  1957. Analysis on apiculus color genes essential to anthocyanin coloration in rice. J. Fac. Agric. Hokkaido Univ. 50, 266-362.
  40. Saitoh, K., Onishi, K., Mikami, I., Thidar, K. and Sano, Y. 2004. Allelic diversification at the C (OsC1) locus of wild and cultivated rice: nucleotide changes associated with phenotypes. Genetics 168, 997-1007. https://doi.org/10.1534/genetics.103.018390
  41. Sakamoto, W., Ohmori, T., Kageyama, K., Miyazaki, C., Saito, A., Murata, M., Noda, K. and Maekawa, M. 2001. The Purple leaf (Pl) locus of rice: the Plw allele has a complex organization and includes two genes encoding basic helix-loop-helix proteins involved in anthocyanin biosynthesis. Plant Cell Physiol. 42, 982-991. https://doi.org/10.1093/pcp/pce128
  42. Shao, Y., Jin, L., Zhang, G., Lu, Y., Shen, Y. and Bao, J. 2011. Association mapping of grain color, phenolic content, flavonoid content and antioxidant capacity in dehulled rice. Theor. Appl. Genet. 122, 1005-1016. https://doi.org/10.1007/s00122-010-1505-4
  43. Shih, C. H., Chu, H., Tang, L. K., Sakamoto, W. Maekawa, M., Chu, I. K., Wang, M. and Lo, C. 2008. Functional characterization of key structural genes in rice flavonoid biosynthesis. Planta 228, 1043-1054. https://doi.org/10.1007/s00425-008-0806-1
  44. Wang, C. and Shu, Q. 2007. Fine mapping and candidate gene analysis of purple pericarp gene Pb in rice (Oryza sativa L.). Chinese Sci. Bull. 52, 3097-3104. https://doi.org/10.1007/s11434-007-0472-x
  45. Wang, X., Ji, Z., Cai, J., Ma, L., Li, X. and Yang, C. 2009. Construction of near isogenic lines for pericarp color and evaluation on their near isogenicity in rice. Rice Sci. 16, 261-266. https://doi.org/10.1016/S1672-6308(08)60089-X
  46. Yoon, H. H., Paik, Y. S., Kim, J. B. and Hahn, T. R. 1995. Identification of anthocyanidins from Korean pigmented rice. Agric. Chem. Biotechnol. 38, 581-583.
  47. Yoshimura, Y., Zaima, N., Moriyama, T. and Kawamura, Y. 2012. Different localization patterns of anthocyanin species in the pericarp of black rice revealed by imaging mass spectrometry. PLoS One 7, e31285. https://doi.org/10.1371/journal.pone.0031285
  48. Zhang, M. W., Zhou, J. and Peng, Z. M. 1994. Effects of different sowing date on yield traits and pigment contents in purple pericarp rice. J. Hubei Agril. Sci. 1, l-4.

Cited by

  1. Developing a framework of gastronomic systems research to unravel drivers of food choice vol.9, 2017, https://doi.org/10.1016/j.ijgfs.2017.06.001

Acknowledgement

Grant : 잡초성 벼 활용 적?갈색 쌀 품종 육성 및 건강기능산업용 소재 개발과 상업화

Supported by : 영남대학교