DOI QR코드

DOI QR Code

각질형성세포에서 왕불유행 헥산 분획물이 Laminin-332 발현에 미치는 효과

송혜진;김미선;이홍구;진무현;이상화
Song, Hye Jin;Kim, Mi-Sun;Lee, Hong Gu;Jin, Mu Hyun;Lee, Sang Hwa

  • 투고 : 2016.04.20
  • 심사 : 2016.06.23
  • 발행 : 2016.06.30

초록

피부 기저막(basement membrane, BM)이란 표피와 진피 사이에 존재하는 특별한 구조물로 표피와 진피를 단단히 고정시켜 피부 구조를 유지하는 데에 중요한 역할을 수행한다. 노화 및 자외선 노출에 의한 피부 기저막의 구조적 변화와 파괴는 피부 주름 형성과 탄력 저하를 포함하는 피부노화 현상의 요인으로 여겨지고 있다. Laminin-332 (LN-332)는 피부 기저막을 구성하는 주성분으로 피부에서 표피와 진피를 단단히 고정시키는데 중요한 역할을 한다. 본 연구에서는 왕불유행 헥산 분획물(Melandrium firmum hexane fraction, MFHF)이 각질형성세포에서 LN-332 발현에 미치는 효과를 확인하였다. 정량적 real-time PCR (RT-PCR)과 단백질 발현 분석을 통해서 MFHF가 LN-332의 mRNA 발현 및 단백질 발현을 촉진시키는 것을 확인하였다. 또한 MFHF가 어떤 신호전달 경로를 통해 LN-332 발현을 조절하는지 확인하기 위하여 p38 MAPK 억제제인 SB202190과 ERK1/2 억제제인 U0126을 처리한 결과, p38 MAPK 억제제에 의해서 LN-332 발현이 완벽히 억제됨을 확인하였다. 또한, 피부 기저막을 구성하고 있는 콜라겐 타입 VII과 integrin ${\alpha}6$의 mRNA 발현 역시 MFHF에 의해 증가하는 것을 확인하였다. 우리는 본 연구를 통해 MFHF가 각질형성세포에 작용하여 피부 기저막을 구성하는 성분들의 생성을 촉진할 수 있는 소재로 작용할 수 있다는 것을 확인하였다. 이러한 결과는 기저막의 구조적, 기능적 이상에 의해 나타나는 피부노화 현상의 개선을 위해 활용할 수 있을 것이라 제안한다.

키워드

basement membrane;laminin-332;Melandrium firmum;skin aging

참고문헌

  1. J. H. Chung, Photoaging in asians, Photodermatol. photoimmunnol. photomed., 19(3), 109 (2003). https://doi.org/10.1034/j.1600-0781.2003.00027.x
  2. G. J. Fisher, S. Kang, J. Varani, Z. Bata-Csorgo, Y. Wan, S. Datta, and J. J. Voorhees, Mechanism of photoaging and chronological skin aging, Arch. Dermatol., 138(11), 1462 (2002).
  3. P. U. Giacomoni and G. Rein, Factors of skin ageing share common mechanisms, Biogerontology, 2(4), 219 (2001). https://doi.org/10.1023/A:1013222629919
  4. T. Nishiyama, S. Amano, M. Tsunenaga, K. Kadoya, A. Takeda, E. Adachi, and R. E. Burgeson, The importance of laminin 5 in the dermal-epidermal basement membrane, J. Dermaltol. Sci., 25, S51 (2000).
  5. C. Reymermier, A. Guezennec, J. E. Branka, J. Guesnet, and E. Perrier, In vitro stimulation of synthesis of key DEJ constituents in a reconstructed skin model: a quantitative study, Int. J. Cosmetic Sci., 25(1-2), 55 (2003). https://doi.org/10.1046/j.1467-2494.2003.00173.x
  6. S. Amano, Possible involvement of basement membrane damage in skin photoaging, J. Investig. Dermatol. Symp. Proc., 14(1), 2 (2009). https://doi.org/10.1038/jidsymp.2009.5
  7. M. C. Ryan, A. M. Christiano, E. Engvall, U. M. Wewer, J. H. Miner, J. R. Sanes, and R. E. Burgesoni, The functions of laminins: lessons from in vivo studies, Matrix Biol., 15(6), 369 (1996). https://doi.org/10.1016/S0945-053X(96)90157-2
  8. F. M. Watt, Selective migration of terminally differentiating cells from the basal layer of cultured human epidermis, J. Cell BIol., 98(1), 16 (1984). https://doi.org/10.1083/jcb.98.1.16
  9. A. Bohnert, J. Hornung, I. C. Mackenzie, and N. E. Fusenig, Epithelial- mesenchymal interactions control basement membrane production and differentiation in cultured and trasplanted mouse keratinocytes, Cell Tissue Res., 244(2), 413 (1986).
  10. Y. Barrandon and H. Green, Three clonal types of keratinocyte with different capacities for multiplication, Proc. Natl. Acad. Sci. USA, 84(8), 2302 (1987). https://doi.org/10.1073/pnas.84.8.2302
  11. K. Muta-Takada, T. Terada, H. Yamanishi, Y. Ashida, S. Inomata, T. Nishiyama, and S. Amano, Coenzyme Q10 protects against oxidative stress-induced cell death and enhances the synthesis of basement membrane components in dermal and epidermal cells, Biofactors, 35(5), 435 (2009). https://doi.org/10.1002/biof.56
  12. S. Amano, Basement membrane damage, a sign of skin early aging, and laminin 5, a key player in basement membrane care, SCCJ., 35(1), 1 (2001).
  13. S. Amano, Y. Ogura, N. Akutsu, Y. Matsunaga, K. Kadoya, E. Adachi, and T. Nishiyama, Protective effect of matrix metalloproteinase inhibitors against epidermal basement membrane damage: skin equinalents partially mimic photoageing process, Br. J. Dermatol., 153(S2), 37 (2005).
  14. Y. Ogura, Y. Matsunaga, S. T. Nishiyama, and S. Amano, Plasmin induces degradation and dysfunction of laminin 332 (laminin 5) and impaired assembly of basement membrane at the dermal-epidermal junctions, Br. J. Dermatol., 159(1), 49 (2008). https://doi.org/10.1111/j.1365-2133.2008.08576.x
  15. D. Olsen and J. Uitto, Differntial expression of type IV procollagen and laminin genes by foetal vs adult skin fibroblasts in culture; determination of subunit mRNA steady state level, J. Invest. Dermatol., 93(1), 127 (1989). https://doi.org/10.1111/1523-1747.ep12277381
  16. Y. Chen, A. Mauviel, and J. Rynanen, Type VII collagen gene expression by human fibroblasts and keratinocytes in culture: influence of donor age on cytokine response, J. Invest. Dermatol., 102(2), 205 (1994). https://doi.org/10.1111/1523-1747.ep12371763
  17. T. Karttunen, J. Risteli, H. Autio-Harmainen, and L. Risteli, Effect of age and diabetes on type IV collagen and laminin in human kidney cortex, Kidney Int., 30(4), 586 (1986). https://doi.org/10.1038/ki.1986.225
  18. M. Y. Seo, S. Y. Chung, W. K. Choi, Y. K. Seo, S. H. Jung, J. M. Park, M. J. Seo, J. K. Park, J. W. Kim, and C. S. Park, Anti-aging effect of rice wine in cultured human fibroblasts and keratinocytes, J. Biosci. Bioeng., 107(3), 266 (2009). https://doi.org/10.1016/j.jbiosc.2008.11.016
  19. J. Sok, N. Pineau, M. Dalko-Csiba, L. Breton, and F. Bernerd, Improvement of the dermal epidermal junction in human reconstructed skin by a new c-xylopyranoside derivative, Eur. J. Dermatol., 18(3), 297 (2008).
  20. M. Yamaguchi, N. Ebihara, N. Shima, M. Kimoto, T. Funaki, S. Yokoo, A. Murakami, and S. Yamagami, Adhesion, migration and proliferation of cultured human corneal endothelial cells by laminin-5, Invest. Ophthalmol. Vis. Sci., 52(2), 679 (2011). https://doi.org/10.1167/iovs.10-5555
  21. S. Amano, N. Akutsu, Y. Ogura, and T. Nishiyama, Increased of laminin 5 synthesis in human keratinocytes by acute wound fluid, inflammatory cytokines and growth factors, and lysophospholipids, Br. J. Dermatol., 151(5), 961 (2004). https://doi.org/10.1111/j.1365-2133.2004.06175.x
  22. P. Rousselle, G. P. Lunstrum, D. R. Keene, and R. E. Burgeson, Kalinin: an epithelium-specific basement membrane adhesion molecule that is a component of anchoring filament, J. Cell Biol., 114(3), 567 (1991). https://doi.org/10.1083/jcb.114.3.567
  23. M. Aumailley, A. E. Khal, N. Knoss, and L. Tunggal, Laminin 5 processing and its integration into the ECM, Matrix Biol., 22(1), 49 (2003). https://doi.org/10.1016/S0945-053X(03)00013-1
  24. M. F. Champliaud, G. P. Lunstrum, P. Rousselle, T. Nishiyama, D. R. Keene, and R. E. Burgeson, Human amnion contains a novel laminin variant, laminin 7, which like laminin 6, covalently associates with laminin 5 to promote stable epithelial-stromal attachment, J. Cell Biol., 132(6), 1189 (1996). https://doi.org/10.1083/jcb.132.6.1189
  25. L. Pulkkinen, A. M. Christiano, T. Airenne, H. Haakana, K. Tryggvason, and J. Uitto, Mutations in the gamma 2 chain gene (LAMC2) of kalinin/laminin 5 in the junctional forms of epidermolysisi bullosa, Nat. Genet., 6(3), 293 (1994). https://doi.org/10.1038/ng0394-293
  26. D. F. Aberdam, J. Galliano, J. Vailly, L. Pulkkinen, J. Bonifas, A. M. Christiano, K. Trygvasson, J. Uitto, E. J. Epstein, J. P. Ortonne, and G. Menneguzzi, Herlitz's junctional epidermolysis bullosa is linked to mutations in the gene for gamma 2 subunit of nicein/kalinin (laminin-5), Nat. Genet., 6(3), 299 (1994). https://doi.org/10.1038/ng0394-299
  27. A. Takeda, K. Kadoya, N. Shioya, M. Tsunenaga, T. Nishiyama, S. Amono, and R. E. Burgeson, Pretreatment of human keratinocyte sheets with laminin 5 improves their grafting efficiency, Invest. Dermatol., 113(1), 38 (1999). https://doi.org/10.1046/j.1523-1747.1999.00645.x
  28. K. H. Lee and S. I. Lee, Comparison of pharmacological effects of melandrii herba and semen in Korea, Kyunghee Univ. Oriental. Med. J., 7(1), 353 (1984).
  29. M. H. Lee, H. S. Han, and Y. J. Lee, Comparison studies on the hyperlipidemia of melandrii herba and vaccariae semen, Kor. J. Herbology., 25(3), 81 (2010).
  30. Y. K. Lee, B. O. Jung, and S. J. Chung, Antioxidant activity of water-soluble chitosan with Melandrium firmum extract, J. Chitin. Chitosan., 19(3), 201 (2014).
  31. N. Nagai, A. Klimava, W. H. Lee, K. Izumi-Nagai, and J. T. Handa, CTGF is increased in basal deposits and regulates matrix production through the ERK (p42/p44 mapk) MPAK and the p38 MAPK signaling pathways, Invest. Ophthalmol. Vis. Sci., 50(4), 1903 (2009). https://doi.org/10.1167/iovs.08-2383
  32. M. Yamada and K. Sekiguchi, Molecular basis of laminin-integrin interactions, Curr. Top. Membr., 76, 197 (2015). https://doi.org/10.1016/bs.ctm.2015.07.002
  33. M. Chen, M. P. Marinkovich, A. Veis, X. Cai, C. N. Rao, E. A. O'Toole, and D. T. Woodley, Interaction of the amino-terminal noncollagenous (NC1) domain of type VII collagen with extracellular matrix components. A potential role in epidermal-dermal adherence in human skin, J. Biol. Chem., 272(23), 14516 (1997) https://doi.org/10.1074/jbc.272.23.14516