DOI QR코드

DOI QR Code

Synthesis of highly crystalline nanoporous titanium dioxide at room temperature

상온에서 고결정성 나노기공 이산화티탄 제조기술

  • Received : 2016.04.08
  • Accepted : 2016.06.16
  • Published : 2016.06.30

Abstract

Initial studies of the photocatalyst has been developed from the field relating to the conversion and storage of solar energy. Recently, the study of the various organic decomposition compound and the water purification and waste water treatment by ultraviolet irradiation in the presence of light or a photocatalyst are being actively investigated. In addition, the oxidized material-carbon nanotubes, graphene-nanocomposites have been studied. Such a complex is suitable as a material constituting the solar cells and photolysis nanoelectronics, including the flexible element due to thermal and chemical stability.

Keywords

Dye-sensitized solar cells;Sol-gel dip-coating process;Advanced oxidation processing method

References

  1. Y. Djaoued, S. Badilescu, P.V. Ashrit, D. Bersani, and P.P. Lottici, J. Robichaud, Low Temperature Sol-Gel Preparation of Nanocrystalline $TiO_2$ Thin Films, J. Sol-Gel Sci. Technol. 24, 247-254, 2002. https://doi.org/10.1023/A:1015305328932
  2. A. Matsuda, Y. Kotani, T. Kogure, M. Tatsumisago, T. Minami, Transparent Anatase Nanocomposite Films by the Sol- Gel Process at Low Temperatures, J. Am. Ceram. Soc., 83, 229-231, 2000. https://doi.org/10.1111/j.1151-2916.2000.tb01178.x
  3. A. Matsuda, T. Kogure, Y. Matsuno, S. Katayama, T. Tsuno, N. Tohge, T. Minami, Structural Changes of Sol-Gel-Derived $TiO_2$-$SiO_2$ Coatings in an Environment of High Temperature and High Humidity, J. Am. Ceram. Soc., 76, 2899-2903, 1993. https://doi.org/10.1111/j.1151-2916.1993.tb04034.x
  4. T. Yonezawa, H. Matsune, and T. Kunitake, Layered Nanocomposite of Close-Packed Gold Nanoparticles and $TiO_2$ Gel Layers, Chem. Mater., 11(1), 33-35, 1999. https://doi.org/10.1021/cm980687a
  5. P. Falaras, A.P. Xagas, Roughness and fractality of nanostructured $TiO_2$ films prepared via sol-gel technique, J. Mater. Sci., 37, 3855-3860, 2002. https://doi.org/10.1023/A:1019686902277
  6. M.S.W. Vong, N. Bazin, P.A. Sermon, Chemical Modification of Silica Gels, J. Sol-Gel Sci. Technol. 8, 499-505, 1997.
  7. H. Segawa, J. Fukuyoshi, K. Tateishi, K. Tanaka, K. Yoshida, Anatase $TiO_2$ film from sol-gel process added polyvinylpyrrolidone, J. Mater. Sci. Lett., 22, 687-690, 2003. https://doi.org/10.1023/A:1023623228830
  8. K. Kajihara, T. Yao, Macroporous Morphology of the Titania Films Prepared by a Sol-Gel Dip-Coating Method from the System Containing Poly(ethylene glycol). IV. General Principle of Morphology Formation and Effect of Heat Treatment, J. Sol-Gel Sci. Technol. 17, 173-184, 2000. https://doi.org/10.1023/A:1008755703999
  9. J.G. Yu, J.C. Yu, B. Cheng, X.J. Zhao, Z. Zheng, A.S.K. Li, Atomic Force Microscopic Studies of Porous $TiO_2$ Thin Films Prepared by the Sol-Gel Method, J. Sol-Gel Sci. Technol., 24, 229-240, 2002. https://doi.org/10.1023/A:1015384624389
  10. L. Zhang, Y. Zhu, Y. He, W. Li, H. Sun, Preparation and performances of mesoporous $TiO_2$ film photocatalyst supported on stainless steel, Appl. Catal., B. Environ., 40, 287-292, 2003. https://doi.org/10.1016/S0926-3373(02)00154-6
  11. G. Cernuto, N. Masciocchi, A. Cevellino, G.M. Colonna, A. Guagliardi, Size and shape dependence of the photocatalytic activity of $TiO_2$ nanocrystals: a total scattering Debye function study, J. Am. Chem. Soc., 133, 3114-3119, 2011. https://doi.org/10.1021/ja110225n
  12. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis properties, modifications, and applications, Chem. Rev., 107, 2891-2959. 2011.
  13. J. Du, W. Chen, C. Zhang, Y. Liu, C. Zhao, Y. Dai, Hydrothermal synthesis of porous $TiO_2$ micro spheres and their photocatalytic degradation of gaseous benzene, Chem. Eng. J. 170, 53-58, 2011. https://doi.org/10.1016/j.cej.2011.03.027
  14. F. Guzman, S.S.C. Chuang, Tracing, the reaction steps involving oxygen and IR observable species in ethanol photocatalytic oxidation on $TiO_2$, J. Am. Chem. Soc., 132, 1502-1503, 2010. https://doi.org/10.1021/ja907256x
  15. C Shen, Y.J. Wang, J.H. Xu, G.S. Luo, Facile synthesis and photocatalytic properties of $TiO_2$ nanaparticles supported on porous glass beads, Chem. Eng. J. 209, 478-485, 2012. https://doi.org/10.1016/j.cej.2012.08.044
  16. N. Wu, J. Wang, D.N. Tafen, H. Wang, J.G. Zheng, J.P. Lewis, X. Liu, S.S. Leonard, A. Manivannan, Shape- enhanced photocatalytic activity of singlecrystalline anatase $TiO_2$ (101) nanobelts, J. Am. Chem. Soc., 132, 6679-6685, 2010. https://doi.org/10.1021/ja909456f
  17. A. Fujishima, X.T. Zhang, D.A. Tryk, $TiO_2$ photocatalysis and related surface phenomena, Surf. Sci. Rep., 63, 515-582, 2008. https://doi.org/10.1016/j.surfrep.2008.10.001
  18. H.U. Lee, K. Ahn, S.Y. Jeong, C.R. Cho, J.P. Kim, J.S. Bae, H.G. Kim, S.H. Kwon, H.W. Lee, Enhanced photocatalytic activity of $TiO_2$ nanobarbed fibers treated with atmospheric pressure plasma using $O_2$ gas, Appl. Phys. Lett., 97, 223111-223113, 2010. https://doi.org/10.1063/1.3524210
  19. G. Liu, C. Sun, H.G. Yang, S.C. Smith, L. Wang, G.Q. Lu, H.M. Cheng, Nanosized anatase $TiO_2$ single crystals for enhanced photocatalytic activity, Chem. Commun., 45, 755-757, 2010.
  20. K. Lee, D. Kim, P. Roy, I. Paramasivam, B.I. Birajdar, E. Spiecker, P. Schmuki, Anodic Formation of Thick Anatase $TiO_2$ Mesosponge Layers for High-Efficiency Photocatalysis, J. Am. Chem. Soc., 132, 1478-1479, 2010. https://doi.org/10.1021/ja910045x
  21. Y.F. Li, Z.P. Liu, Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings, J. Am. Chem. Soc., 133, 15743-15752, 2011. https://doi.org/10.1021/ja206153v
  22. S. Liu, J. YU, M. Jaroniec, Tunable photocatalytic selectivity of hollow $TiO_2$ microspheres composed on anatase polyhedral with exposed 001 facets, J. Am. Chem. Soc., 132, 11914-11916, 2010. https://doi.org/10.1021/ja105283s
  23. X. Sun, Y. Shi, P. Zhang, C. Zheng, X. Zheng, F. Zhang, Y. Zhang, N. Guan, D. Zhao, C.D. Stucky, Container effect in nanocasting synthesis of mesoporous metal oxide, J. Am. Chem. Soc., 133, 14542-14545, 2011. https://doi.org/10.1021/ja2060512
  24. P. Hartmann, D.K. Lee, B.M. Smarsly, J. Janek, Mesoporous $TiO_2$: comparison of classical sol-gel and nanoparticle based photoelectrodes for the water splitting reaction, ACS Nano 4, 3147-3154, 2010. https://doi.org/10.1021/nn1004765
  25. H. Shibata, T. Ogura, T. Mukai, T. Ohkubo, H. Sakai, M. Abe, Direct synthesis of mesoporous titania particles having a crystalline wall, J. Am. Chem. Soc., 127, 16396-16397, 2005. https://doi.org/10.1021/ja0552601
  26. D.S. Kim, S.Y. Kwak, The hydrothermal synthesis of mesoporous $TiO_2$ with high crystallinity thermal stability, large surface area, and enhanced photocatalytic activity, Appl. Catal. A: General 323, 110-118, 2007. https://doi.org/10.1016/j.apcata.2007.02.010
  27. M.M. Mohamed, W.A. Bayoumy, M. Khairy, M.A. Mousa, Synthesis of micromesoporous $TiO_2$ materials assembled via cationic surfactants: morphology, thermal stability and sueface acidity characteristics, Micropor, Mesopor, Mater. 103, 174-183, 2007. https://doi.org/10.1016/j.micromeso.2007.01.052
  28. T. Peng, D. Zhao, K. Dai, W. Shi, K. Hirao, Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity, J. Phys. Chem. B 109, 4947-4952, 2005. https://doi.org/10.1021/jp044771r
  29. D. Wang, D. Choi, Z. Yang, V.V. Viswanathan, Z. Nie, C. Wang, Y. Song, J.G. Zhang, J. Lie, Synthesis and Li-ion insertion properties of highly crystalline mesoporous rutile $TiO_2$, Chem. Mater., 20, 3435-3442, 2008. https://doi.org/10.1021/cm8002589
  30. A. Mitra, A. Bhaumik, B.K. Paul, Synthesis and characterization of mesoporous titanium dioxide using self-assembly of sodium dodecyl sulfate and benzyl alcohol systems as templates, Micropor, Mesopor, Mater., 109, 66-72, 2008. https://doi.org/10.1016/j.micromeso.2007.04.052
  31. J. Ye, W. Liu, J. Cai, S. Chen, X. Zhao, H. Zhou, L. Qi, Nanoporous anatase $TiO_2$ mesocrystals: additive- free synthesis, remarkable crystalline-phase stabillity, and improved lithium insertion behavior, J. Am. Chem. Soc., 133, 933-940, 2011. https://doi.org/10.1021/ja108205q
  32. G.J. de A.A. Soler-Illia, A. Louis, C. Sanchez, Synthesis and characterization of mesostructured titania-based materials through evaporation-induced self-assembly, Chem. Mater., 14, 750-759, 2002. https://doi.org/10.1021/cm011217a
  33. A. Jena, R. Vinu, S.A. Shivashankar, G. Madras, Microwave assisted synthesis of nanostructured titanium dioxide with high photocatalytic activity, Ind. Eng. Chem. Res., 49, 9636-9643, 2010. https://doi.org/10.1021/ie101226b
  34. A. Sun, Z. Li,, M. Li, G. Xu, Y. Li, P. Cui, Room temperature synthesis of spherical mesoporous titania, Powder Technol., 201, 130-137, 2010. https://doi.org/10.1016/j.powtec.2010.03.012
  35. G. Li, L, Li, J. Boerio-Goates, B.F. Woodfield, High purity anatase $TiO_2$ nanocrystals: near roomtemperature synthesis, grain growth kinetics, and surface hydration chemistry, J. Am. Chem. Soc., 127, 8659-8666, 2005. https://doi.org/10.1021/ja050517g
  36. S. Han, S.H. Choi, S.S. Kim, M. Cho, B. Jang, D.Y. Kim, J. Yoon, T. Hyeon, Low-temperature synthesis of highly crystalline $TiO_2$ nanocrystals and their application to photocatalysis, Small 1, 812-816, 2005. https://doi.org/10.1002/smll.200400142
  37. D.S. Zhang, T. Yoshida, T. Oekermann, K. Furuta, H. Minoura, room-temperature synthesis of porous nanoparticulate $TiO_2$ films for flexibledye-sensitized solar cells, Adv. Funct. Mater., 16, 1228-1234, 2005.
  38. K. Prasad, D.V. Pinjari, A.B. Pandit, S.T. Mhaske, Phase transformation of nanostructured titanium dioxide from anatase-to-rutile via combined ultrasound assisted sol-gel technique, Ultra, Sonochem., 17, 409-415, 2010. https://doi.org/10.1016/j.ultsonch.2009.09.003
  39. L. Gonzalez-Reyes, I. Hernandez-Perez, L. Diaz- Barriga Arceo, H. Dorantes-Rosales, E. Arce-Estrada, R. Suarez-Parra, J.J. Cruz-Rivera, Temperature effects during Ostwald ripening on structural and bandgap properties of $TiO_2$ nanoparticles prepared by sonochemical synthesis, J. Mater. Sci. Eng. B 175, 9-13, 2010. https://doi.org/10.1016/j.mseb.2010.06.004
  40. H.U. Lee, S.H. Choi, B. Son, S.J. Lee, H.J. Kim, J. Lee, Highly visible-light active nanoporous $TiO_2$ photocatalysts for efficient solar photocatalytic application, Appl. Catal. B: Environ., 129, 106-113, 2013. https://doi.org/10.1016/j.apcatb.2012.09.010
  41. N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto, Journal of Physical Chemistry B 107, 1028-1935, 2003. https://doi.org/10.1021/jp022105p
  42. Y. Suda, H. Kawasaki, T. Ueda, T. Ohshima, Preparation of high quality nitrogen doped $TiO_2$ thin film as a photocatalyst using a pulsed laser deposition method, Thin Solid Films, 453, 162-166, 2004.
  43. J.G. Yu, X.J. Zhao, Q.N. Zhao, Effect of surface structure on photocatalytic activity of $TiO_2$ thin films prepared by sol-gel method, Thin Solid Films, 379, 7-14, 2000. https://doi.org/10.1016/S0040-6090(00)01542-X
  44. N. Negishi, T. Iyoda, K. Hashimoto, A. Fujishima, Preparation of Transparent $TiO_2$ Thin Film Photocatalyst and Its Photocatalytic Acitivity, Chemistry Letters (9), 841-842, 1995.
  45. J.Y. Zheng, H. Yu, X.J. Li, S.Q. Zhang, Enhanced photocatalytic activity of $TiO_2$ nano-structured thin film with a silver hierarchical configuration, Applied Surface Science, 254, 1630-1635, 2008. https://doi.org/10.1016/j.apsusc.2007.07.165
  46. S. Takeda, S. Suzuki, H. Odaka, H. Hosono, Photocatalytic $TiO_2$ thin film deposited onto glass by DC magnetron sputtering, Thin Solid Films, 392, 338-344, 2001. https://doi.org/10.1016/S0040-6090(01)01054-9
  47. M. Okuya, K. Nakade, S. Kaneko, Porous $TiO_2$ thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells, Solar Energy Materials and Solar Cells, 70, 425-435, 2002. https://doi.org/10.1016/S0927-0248(01)00033-2
  48. K.J. Xu, G.Q. Zhu, Preparation and characterization of nano-La (S, C)-$TiO_2$ oriented films by template hydrothermal synthesis, Applied Surface Science, 255, 6691-6695, 2009. https://doi.org/10.1016/j.apsusc.2009.02.067

Acknowledgement

Supported by : 한국과학기술정보연구원