DOI QR코드

DOI QR Code

Spark Plasma Sintering Behavior and Heat Dissipation Characteristics of the Aluminum Matrix Composite Materials with the Contents of Graphite

흑연 함량에 따른 알루미늄 기지 복합재료의 방전플라즈마소결 거동 및 방열 특성

  • Received : 2016.06.01
  • Accepted : 2016.06.17
  • Published : 2016.06.28

Abstract

Composite materials consisting of pure aluminum matrix reinforced with different amounts of graphite particles are successfully fabricated by mechanical ball milling and spark plasma sintering (SPS) processes. The shrinkage rates of the composite powders vary with the amount of graphite particles and the lowest shrinkage value is observed for the composite with the highest amount of graphite particles. The current slopes of time increase with increase in the amount of graphite particles whereas the current slopes of temperature show the opposite trend. The highest thermal conductivity is achieved for the composite with the least amount of graphite particles. Therefore, the thermal properties of the composite materials can be controlled by controlling the amount of the graphite particles during the SPS process.

Keywords

Aluminum;Graphite;Spark Plasma Sintering;Thermal Conductivity;Coefficient of thermal expansion (CTE)

References

  1. G. Kravchenko, B. Karunamurthy and H. E. Pettermann: Procedia Mater. Sci., 3 (2014) 63. https://doi.org/10.1016/j.mspro.2014.06.014
  2. M. Andresen and M. Liserre: Microelectron. Reliab., 54 (2014) 1935. https://doi.org/10.1016/j.microrel.2014.07.069
  3. N. Govindaraju and R. N. Singh: Mater. Sci. Eng. B, 176 (2011) 1058. https://doi.org/10.1016/j.mseb.2011.05.042
  4. W. Zhang, L. Shen, Y. Yang and H. Chen: Appl. Therm. Eng., 90 (2015) 664. https://doi.org/10.1016/j.applthermaleng.2015.07.027
  5. H. Kwon, S. Cho and A. Kawasaki: Mater. Trans., 1 (2015) 108.
  6. H. Kwon, D. H. Park, Y. Park, J. F. Silvain, A. Kawasaki and Y. Park: Met. Mater. Int., 1 (2010) 71.
  7. S. Cho, K. Kikuchi, A. Kawasaki, H. Kwon and Y. Kim: Nanotechnology, 23 (2012) 315705. https://doi.org/10.1088/0957-4484/23/31/315705
  8. X. J. Zhao, Y. X. Cai, J. Wang, X. H. Li and C. Zhang: Appl. Therm. Eng., 75 (2015) 248. https://doi.org/10.1016/j.applthermaleng.2014.09.066
  9. M. Schobel, H.P. Degischer, S. Vaucher, M. Hofmann and P. Cloetens: Acta Mater., 58 (2010) 6421. https://doi.org/10.1016/j.actamat.2010.08.004
  10. G. Lalet, H. Kurita, J.M. Heintz, G. Lacombe, A. Kawasaki and J.F. Silvain: J. Mater. Sci., 49 (2014) 3268. https://doi.org/10.1007/s10853-014-8032-7
  11. H. Kurita, H. Kwon, M. Estili and A. Kawasaki: Mater. Trans., 10 (2011) 1960.
  12. T. Etter, P. Schulz, M. Weber, J. Metz, M. Wimmler, J. F. Lofer and P. J. Uggowitzer: Mater. Sci. Eng. A, 448 (2007) 1. https://doi.org/10.1016/j.msea.2006.11.088
  13. D. M. Hulbert, A. Anders, J. Andersson, E. J. Lavernia and A. K. Mukherjee: Scr. Mater., 60 (2009) 835. https://doi.org/10.1016/j.scriptamat.2008.12.059
  14. J.K. Park and J.P. Lucas: Scr. Mater., 37 (1997) 511. https://doi.org/10.1016/S1359-6462(97)00133-4
  15. K. Yoshida and H. Morigami: Microelectron. Reliab., 44 (2004) 303. https://doi.org/10.1016/S0026-2714(03)00215-4

Cited by

  1. Effect of processing parameters on the microstructural and mechanical properties of aluminum–carbon nanotube composites produced by spark plasma sintering vol.109, pp.10, 2018, https://doi.org/10.3139/146.111686