DOI QR코드

DOI QR Code

A Study on Synthesis of Ni-Ti-B Alloy by Mechanical Alloying from Elemental Component Powder

  • Kim, Jung Geun ;
  • Park, Yong Ho
  • Received : 2016.04.05
  • Accepted : 2016.06.02
  • Published : 2016.06.28

Abstract

A Ni-Ti-B alloy powder prepared by mechanical alloying (MA) of individual Ni, Ti, and B components is examined with the aim of elucidating the phase transitions and crystallization during heat treatment. Ti and B atoms penetrating into the Ni lattice result in a Ni (Ti, B) solid solution and an amorphous phase. Differential thermal analysis (DTA) reveals peaks related to the decomposition of the metastable Ni (Ti, B) solid solution and the separation of equilibrium $Ni_3Ti$, $TiB_2$, and ${\tau}-Ni_20Ti_3B_6$ phases. The exothermal effects in the DTA curves move to lower temperatures with increasing milling time. The formation of a $TiB_2$ phase by annealing indicates that the mechanochemical reaction of the Ni-Ti-B alloy does not comply with the alloy composition in the ternary phase diagram, and Ti-B bonds are found to be more preferable than Ni-B bonds.

Keywords

Ball-milling;Mechanical alloying;X-ray diffraction;Phase transitions;Differential Thermal Analysis

References

  1. R. B. Schwarz and C. C. Koch: Appl. Phys. Lett., 49 (1986) 146. https://doi.org/10.1063/1.97206
  2. J. S. Benjamin: Metal Powder Report, 45 (1990) 122. https://doi.org/10.1016/S0026-0657(10)80124-9
  3. C. Suryanarayana: Prog. Mater. Sci., 46 (2001) 1. https://doi.org/10.1016/S0079-6425(99)00010-9
  4. J. B. Choi and J. H. Ahn: J. Korean Powder Metall. Inst., 21 (2014) 338 (Korean). https://doi.org/10.4150/KPMI.2014.21.5.338
  5. A. Corrias, G. Ennas, G. Marongiu, A. Musinu, G. Paschina and D. Zedda: Mater. Sci. Eng. A 204 (1995) 211. https://doi.org/10.1016/0921-5093(95)09963-8
  6. Masoud N.S., Ali R.K, Roohallah M. and Mahboobeh N.S: Mater. Lett., 64 (2010) 309. https://doi.org/10.1016/j.matlet.2009.10.070
  7. N. Merk, D.G. Morris and P. Stadelmann: Acta Metall., 35 (1987) 2213. https://doi.org/10.1016/0001-6160(87)90069-1
  8. R. B. Schwarz, R. R. Petrich and C. K. Saw: J. Non-Cryst. Solids, 76 (1985) 281. https://doi.org/10.1016/0022-3093(85)90005-5
  9. N. Merk, D. G. Morris and M. A. Morris: J. Mater. Sci., 23 (1988) 4132. https://doi.org/10.1007/BF01106848
  10. D. A. Romano, E. N. Goncharova, E. A. Budovskikh, V. E. Gromov, Yu. F. Ivanov and A. D. Teresov: Inorg. Mater., 6 (2015) 536. https://doi.org/10.1134/S2075113315050159
  11. V. I. Fadeeva, I. A. Sviridov and L. M. Kubalova: Inorg. Mater., 45 (2009) 369. https://doi.org/10.1134/S0020168509040074
  12. L. M. Kubalova, V. I. Fadeeva, I. A. Sviridov and S. A. Fedotov: J. Alloys Compd., 483 (2009) 86. https://doi.org/10.1016/j.jallcom.2008.07.167
  13. L. M. Kubalova and V. I. Fadeeva: Bull. Russ. Acad. Sci. Phys., 74 (2010) 670. https://doi.org/10.3103/S1062873810050242
  14. H. J. Goldschmidt: Interstitial Alloys, London, Butter worths (1967) 632.
  15. G. S. Was: Prog. Surf. Sci., 32 (1990) 211.
  16. J. D. Schobel and H. H. Stadelmaier: Metall, 19 (1965) 715.
  17. C. B. Finch, P. F. Becher, M. K. Ferber, V. J. Tennery and C. S. Yust: J. Cryst. Growth, 58 (1982) 647. https://doi.org/10.1016/0022-0248(82)90156-7
  18. Y. F. Yang, H. Y. Wang, R. Y. Zhao, Y. H. Liang and Q. C. Jianga: J. Mater. Res., 23 (2008) 2519. https://doi.org/10.1557/jmr.2008.0317
  19. P. Villars, A. Prince and H. Okamoto: Handbook of Ternary Alloy Phase Diagrams Vol. 5, ASM International (1995) 5855.