DOI QR코드

DOI QR Code

Spark Plasma Sintering of Fe-Ni-Cu-Mo-C Low Alloy Steel Powder

Nguyen, Hong-Hai;Nguyen, Minh-Thuyet;Kim, Won Joo;Kim, Ho Yoon;Park, Sung Gye;Kim, Jin-Chun

  • 투고 : 2016.05.12
  • 심사 : 2015.06.16
  • 발행 : 2016.06.28

초록

In this study, Fe-Cu-Ni-Mo-C low alloy steel powder is consolidated by spark plasma sintering (SPS) process. The internal structure and the surface fracture behavior are studied using field-emission scanning electron microscopy and optical microscopy techniques. The bulk samples are polished and etched in order to observe the internal structure. The sample sintered at $900^{\circ}C$ with holding time of 10 minutes achieves nearly full density of 98.9% while the density of the as-received conventionally sintered product is 90.3%. The fracture microstructures indicate that the sample prepared at $900^{\circ}C$ by the SPS process is hard to break out because of the presence of both grain boundaries and internal particle fractures. Moreover, the lamellar pearlite structure is also observed in this sample. The samples sintered at 1000 and $1100^{\circ}C$ exhibit a large number of tiny particles and pores due to the melting of Cu and aggregation of the alloy elements during the SPS process. The highest hardness value of 296.52 HV is observed for the sample sintered at $900^{\circ}C$ with holding time of 10 minutes.

키워드

Low alloy steel;Spark plasma sintering;Microstructure;Vickers hardness;Field emission scanning electron microscopy

참고문헌

  1. I. Chang and Y. Zhao: Advances in Powder Metallurgy: Properties, Processing and Applications, Woodhead Publishing, UK (2013).
  2. R. Yilmaz and M. R. Ekici: Journal of Achievements in Materials and Manufacturing Engineering, 31 (2008) 23.
  3. H. Khorsand, S. M. Habibi, H Yoozbashizadea, K. Janghorban, S. M. S Reihani, H. Rahmani Seraji and M. Ashtari: Mater. Des., 23 (2002) 667. https://doi.org/10.1016/S0261-3069(02)00046-8
  4. Y. H. Lu, Z. Y. Xiao, L. Hu, F. Luo, Y. B. Wu and D. H. Ni: Mater. Des., 55 (2004) 758.
  5. B. Lopez, I. Gutierrez and J. J. Urcola: Mater. Charact., 28 (1992) 49. https://doi.org/10.1016/1044-5803(92)90028-G
  6. G. Navarro, M. A. Jabbari Taleghani and J. M. Torralba: Powder Metall., 56 (2013) 11. https://doi.org/10.1179/0032589912Z.00000000087
  7. R. J. Causton and J. J. Fulmer: Adv. Powder. Metall. Part. Mater., 5 (1992) 17.
  8. M. D. Charre: Microstructure of Steels and Cast Irons, Springer (2003) 284.
  9. M. Tokita: Materials Science Forum, 308 (1999) 83.
  10. R. Chaim: Mater. Sci. Eng. A, 443 (2007) 25. https://doi.org/10.1016/j.msea.2006.07.092
  11. N. Saheb, Z. Iqbal, A. Khalil, A. S. Hakeem, N. A. Aqeeli, T. Laoui, A. A. Quitub and R. Kirchner: J. Nanomater., 2012 (2012) 1.
  12. M. Schwertz, S. Lemonnier, E. Barraud, A. Carrado, M. F. Vallat and M. Nardin: Powder Metall., 58 (2015) 87. https://doi.org/10.1179/0032589914Z.000000000212
  13. M. Suaìrez, A. Fernandez, J. L. Meneìndez, R. Torrecillas, H. U. Kessel, J. Hennicke, R. Kirchner and T. Kessel: Sintering Applications, B. Ertug (Ed), InTech (2013) 319.
  14. Z. A. Munir, U. Anselmi-Tamburini, M. Ohyanagi: J. Mater. Sci., 41 (2006) 763. https://doi.org/10.1007/s10853-006-6555-2
  15. F. Zhang, M. Reich, O. Kessler and E. Burkel: Mater. Today, 16 (2013) 192. https://doi.org/10.1016/j.mattod.2013.05.005
  16. S. N. Bagchi and K. Prakash: Industrial Steel Reference Book, New Age International, New Delhi (1986).
  17. M. Tokia: J. Soc. Powder Technol. Japan, 30 (1993) 790. https://doi.org/10.4164/sptj.30.11_790
  18. E. Oberg, F. D. Jones, H. L. Horton and H. H. Ryffel: Machinery's Handbook, Industrial Press, C. J. Mccauley (Ed), New York (2012).

과제정보

연구 과제 주관 기관 : University of Ulsan