Recent Developments in Nuclear Forensic and Nuclear Safeguards Analysis Using Mass Spectrometry

DOI QR코드

DOI QR Code

Song, Kyuseok;Park, Jong-Ho;Lee, Chi-Gyu;Han, Sun-Ho

  • 투고 : 2016.05.30
  • 심사 : 2016.06.22
  • 발행 : 2016.06.30

초록

The analysis of nuclear materials and environmental samples is an important issue in nuclear safeguards and nuclear forensics. An analysis technique for safeguard samples has been developed for the detection of undeclared nuclear activities and verification of declared nuclear activities, while nuclear forensics has been developed to trace the origins and intended use of illicitly trafficked nuclear or radioactive materials. In these two analytical techniques, mass spectrometry has played an important role in determining the isotope ratio of various nuclides, contents of trace elements, and production dates. These two techniques typically use similar analytical instruments, but the analytical procedure and the interpretation of analytical results differ depending on the analytical purpose. The isotopic ratio of the samples is considered the most important result in an environmental sample analysis, while age dating and impurity analysis may also be important for nuclear forensics. In this review, important aspects of these techniques are compared and the role of mass spectrometry, along with recent progress in related technologies, are discussed.

키워드

Safeguard sample analysis;nuclear forensic analysis;mass spectrometry

참고문헌

  1. Donohue, D. J. Alloys Comp. 1998, 271, 11. https://doi.org/10.1016/S0925-8388(98)00015-2
  2. Fact sheet on DPRK Nuclear Safeguards, IAEA, https://www.iaea.org/newcenter/focus/fact-sheet-on-dprknuclear-safeguards.
  3. IAEA bulletin, 1/1992, page 16.
  4. Moyland, S. von; The IAEA’s program ‘93+2’, Verification matters No 10, VERTIC, London, 1997.
  5. ITDB 2015 Fact sheet, Illicit Trafficking Data Base, IAEA.
  6. Mayer, K.; Wallenius, M.; Ray, I. Analyst 2005, 130, 433. https://doi.org/10.1039/B412922A
  7. Stanley, F.E.; Stalcup, A.M.; Spitz, H.B. J. Radioanal. Nucl. Chem. 2013, 295, 1385. https://doi.org/10.1007/s10967-012-1927-3
  8. Fedchenko, V. Strategic Analysis 2014, 38, 230. https://doi.org/10.1080/09700161.2014.884442
  9. Chandramouleeswaran, S.; Ramkumar, J. J. Anal. Bioanal Techniques 2014, S6, 005.
  10. Chapter 3. Technology for Detection of Emissions, Environmental Monitoring for Nuclear Safeguards, U.S. Congress, Office of Technology Assessment, OTA-BPISS-168, Washington, DC: U.S. Government Printing Office, September, 1995.
  11. Boulyga, S.; Konegger-Kappel, S.; Ruichter, S.; Sangley, L. J. Anal. At. Spectrom. 2015, 30, 1469. https://doi.org/10.1039/C4JA00491D
  12. Aggarwal, S. K. Anal. Meth. 2016, 8, 942. https://doi.org/10.1039/C5AY02816G
  13. Carchon, R.; Moeslinger, M.; Bourva, L.; Bass, C.; Zendel, M. Nucl. Instrum. Meth. Phys. Res. A 2007, 579, 380. https://doi.org/10.1016/j.nima.2007.04.086
  14. Vogt, S.; Zahradnik, P.; Klose, D.; Swietly, H. IAEA-SM-367/10/06.
  15. Kim, C. S.; Kim. C. K.; Lee, J. I.; Lee, K. J. J. Anal. At. Spectrom. 2000, 15, 247. https://doi.org/10.1039/a907739a
  16. Takahashi, M.; Magara, M.; Sakurai, S.; Kurosawa, S.; Sakakibara, T.; Hanzawa, Y.; Esaka, F.; Watanabe, K. Usuda, S.; Adachi, T. J. Nucl. Sci. Techno. 2002, Supl. 3, 568. https://doi.org/10.1080/00223131.2002.10875532
  17. Lee, M. H.; Park. J. H.; Oh, S. Y.; Ahn, H.J.; Lee, C.G.; Song, K.; Lee, M. S. Talanta 2011, 86, 99. https://doi.org/10.1016/j.talanta.2011.08.019
  18. Amstrong, C. R.; Ticknor, B. W.; Hall, G.; Cradieux, J. R. J. Radioanal. Nucl. Chem. 2014, 300, 859. https://doi.org/10.1007/s10967-014-3070-9
  19. McCormick, Appl. Radiat. Isotopes 1992, 43, 271. https://doi.org/10.1016/0883-2889(92)90099-Z
  20. Pereira de Oliveira, O.; De Bolle, W.; Richter, S.; Alonso, A.; Kuhn, H.; Sarkis, J. E. S.; Wellum, R. Int. J. Mass Spectrom. 2005, 246, 35. https://doi.org/10.1016/j.ijms.2005.08.004
  21. Park. J. H.; Jung, K.; Song, K. Asian J. Chem. 2013, 25. 7016.
  22. Saito-Kokubu, Y.; Suzuki, D.; Lee, C.-G.; Inagawa, J.; Magara, M.; Kimura, T. Int. J. Mass Spectrom. 2012, 310, 52. https://doi.org/10.1016/j.ijms.2011.11.008
  23. Farmer III, O. T.; Olsen K. B.; Thomas, M.L.; Garofoli, S.J. J. Radioanal. Nucl. Chem. 2008, 276, 489. https://doi.org/10.1007/s10967-008-0531-z
  24. Park, J.-H.; Lee, S.; Ha, Y.-G.; Lee, S. A.; J. K. Lee, M.; Song, K. J. Radioanal. Nucl. Chem. 2015, 303, 1297. https://doi.org/10.1007/s10967-014-3484-4
  25. Lee, C. G.; Suzuki, D.; Esaka, F.; Magara, M.; Song, K. Talanta 2015, 141, 92. https://doi.org/10.1016/j.talanta.2015.03.060
  26. Magara, M.; Hanazawa, Y.; Esaka, F.; Miyamoto, Y.; Yasuda, K. Watanabe, K. Usuda, S.; Nishimura, H.; Adachi, T. Appl. Rad. Isotope 2000, 53, 87. https://doi.org/10.1016/S0969-8043(00)00117-2
  27. Godoy, M. L. D. P.; Godoy, J. M.; Roldao, L. A. J. Environ. Raioactiv. 2007, 97, 124. https://doi.org/10.1016/j.jenvrad.2007.03.010
  28. Szeles, E.; Varga, Z.; Stefanka, Z. J. Anal. At. Spectrom. 2010, 25, 1014. https://doi.org/10.1039/b926332b
  29. Lim, S. H.; Han, S. H.; Park, J. H.; Park, R.; Lee, M. Y.; Park, J. K. Lee, C. G.; Song, K. Mass Spectrom. Lett. 2015, 6, 75. https://doi.org/10.5478/MSL.2015.6.3.75
  30. Pestana, R. C. B.; Sarkis, J. E. S.; Marin, R. C.; Abreu-Junior, C. H.; Carvalho, E. F. U. J. Radioanal. Nucl. Chem. 2013, 298, 621. https://doi.org/10.1007/s10967-013-2467-1
  31. Mitroshkov, A. V.; Olsen, K. B.; Thomas, M. L. J. Anal. Atom. Spectrom. 2015, 30, 487. https://doi.org/10.1039/C4JA00282B
  32. Usuda, S.; Magara, M.; Esaka, F.; Yasuda, K.; Sito-Kokubu, Y.; Lee, C. G.; Miyamoto, Y.; Suzuki, D.; Inagawa, D.; Sakurai, S. ; Murata, F. J. Nucl. Radiochem. Sci. 2010, 11, A5. https://doi.org/10.14494/jnrs.11.A5
  33. Song, K.; Park, J.-H.; Lee, C.-G.; Lim. S.H.; Han, S.-H.; Park, J. J. Radioanal. Nucl. Chem. 2016, 307, 1847. https://doi.org/10.1007/s10967-015-4372-2
  34. Donohue, D.; Vogt, S.; Ciurapinski, A.; Ruedenauer, F.; Hedberg, M. IAEA-SM-367/10/07, IAEA.
  35. Donohue, D. IAEA-CN-184/159.
  36. Stezer, O.; Betti, M.; van Geel, J.; Edermann, N.; kratz, J.-V.; Shenkel, R.; Trautmann, N. Nucl. Instrum. Meth. Phys. Res. A 2004, 525, 582. https://doi.org/10.1016/j.nima.2004.01.079
  37. Esaka, F.; Watanabe, K.; Fukuyama, H.; Onodera, T.; Esaka, K. T.; Magara, M.; Sakurai, S.; Usuda, S. J. Nucl. Sci. Tech. 2004, 41, 1027. https://doi.org/10.1080/18811248.2004.9726327
  38. Wang, F.; Chen, Y.; Zhao, Y.; Zhang, Y.; Wang, T.-X.; Li, J.-H.; Chang, Z.-Y.; Cui, H.-P. J. Radioanal. Nucl. Chem. 2013, 298, 1865. https://doi.org/10.1007/s10967-013-2575-y
  39. Kurosaki, H.; Lamont, S.; FIlby, R.; Clark, S.B.; Peterman, D. J. Nucl. Sci. Tech. 2002, Supp. 3, 493. https://doi.org/10.1080/00223131.2002.10875514
  40. Park, Y. J.; Song, K.; Pyo, H. Y.; Lee, M. H.; Jee, K. Y.; Kim, W. H. Nucl. Instrum. Meth. Phys. Res. A 2006, 557, 657. https://doi.org/10.1016/j.nima.2005.11.220
  41. Lee, M. H.; Park, J. H.; Song, K. Radiation Measurements 2011, 46, 409. https://doi.org/10.1016/j.radmeas.2011.01.019
  42. Lee. C. G.; Iguchi, K. Inagawa, J.; Suzuki, D.; Esaka, F.; Magara, M.; Sakurai, S.; Watanabe, K.; Usuda, S. J. Radioanal. Nucl. Chem. 2007, 272, 299. https://doi.org/10.1007/s10967-007-0519-0
  43. Lee, C. G.; Suzuki, D.; Esaka, F.; Magara, M.; Kimura, T. Talanta 2011, 85, 644. https://doi.org/10.1016/j.talanta.2011.04.042
  44. Chen. Y.; Shen, Y.; Chang, Z.-Y.; Zha, Y.-G.; Guo, S.-L.; Cui, J.-Y.; Liu, Y. Rad. Meas. 2013, 50, 43. https://doi.org/10.1016/j.radmeas.2012.10.015
  45. Esaka, F.; Suzuki, D.; Magara, M. Anal. Chem. 2015, 87, 3107. https://doi.org/10.1021/acs.analchem.5b00236
  46. Park, S.; Park, J. -H.; Lee, M. H.; Song, K. Mass Spectom. Lett. 2011, 2, 57. https://doi.org/10.5478/MSL.2011.2.2.057
  47. Pestana, R.C.B.; Sarkis, J.E.S.; Marin, R.C.; Carvalho, E.F.U. Int. Nucl. Atlantic Conf-INSA 2013, 2013.
  48. Kraiem, M.; Richter, S.; Kuhn, H.; Aregbe, Y. Anal. Chim. Acta 2011, 688, 1. https://doi.org/10.1016/j.aca.2010.12.003
  49. Esaka, F.; Esaka, K. T.; Lee, C. G.; Magara, M.; Sakurai, S.; Usuda, S.; Wtanabe, K. Talanta 2007, 71, 1011. https://doi.org/10.1016/j.talanta.2006.05.091
  50. Kariem, M.; Richter, S.; Erdmann, N.; Kuhn, H.; Hedberg, M.; Aregbe, Y. Anal. Chim. Acta 2012, 748, 37. https://doi.org/10.1016/j.aca.2012.08.030
  51. Park. J. H.; Park. S.; Song, K. Mass Spectrom. Lett. 2013, 4, 51. https://doi.org/10.5478/MSL.2013.4.3.51
  52. Tamborini, G.; Betti, M.; Forcia, V.; Hiernaut, T.; GIovannone, B.; Koch, L. Spectrochim. Acta B 1998, 53, 1289. https://doi.org/10.1016/S0584-8547(98)00121-9
  53. Esaka, F.; Watanabe, K.; Onodera, T.; Lee, C.-G.; Magara, M.; Sakurai, S.; Usuda, S. Appl. Surf. Sci. 2008, 255, 1512. https://doi.org/10.1016/j.apsusc.2008.05.110
  54. Hedberg, P. M. L.; Peres, P.; Cliff, J. B.; Rabemananjara, F.; Littmann, S.; Thiele, H.; Vincent, C.; Albert, N. J. Anal. Atom. Spectrom. 2011, 26, 406. https://doi.org/10.1039/C0JA00181C
  55. Esaka, F.; Lee, C. G.; Magara, M.; Kimura, T. Anal. Chim. Acta 2012, 721, 122. https://doi.org/10.1016/j.aca.2012.01.045
  56. Esaka, F.; Suzuki, D.; Yomogida, T,; Magara, M. Anal. Methods 2016, 8, 1543. https://doi.org/10.1039/C5AY02841H
  57. Shinonaga, T.; Esaka, F.; Magara, M.; Klose, D.; Donohue, D. Spectrochim. Acta Part B 2008, 63, 1324. https://doi.org/10.1016/j.sab.2008.09.001
  58. Ranebo, Y. Hedberg, P. M. L.; Whitehouse, M. J.; Ingeneri, K.; Littmann, S. J. Anal. At. Spectrom. 2009, 24, 277. https://doi.org/10.1039/b810474c
  59. Peres, P.; Hedberg, P. M. L.; Walton, S.; Montgomery, N.; Cliff, J. B.; Rabemananjara, F.; Schuhmacher, M. Surf. Interface Anal. 2013, 45, 561. https://doi.org/10.1002/sia.5015
  60. Zhang, X. Z.; Esaka, F.; Esaka, K. T.; Magara, M.; Sakurai, S. Usuda, S. Watanabe, K. Spectrochim. Acta Part B 2007, 62, 1130. https://doi.org/10.1016/j.sab.2007.06.013
  61. Esaka, F.; Magara, M.; Kimura, T. J. Anal. At. Spectrom. 2013, 28, 682. https://doi.org/10.1039/c3ja30384e
  62. Varga, Z. Analytica Chimica Acta 2008, 625, 1. https://doi.org/10.1016/j.aca.2008.07.012
  63. IAEA Nuclear Security Series No.2-G (Rev. 1), Nuclear Forensics Support, Technical guidance reference manual, IAEA, Vienna (2015).
  64. Kappel, S.; Boulyga, S. F.; Dorta, L.; Gunter, D.; Hattendorf, B.; Koffler, D.; Laaha, G.; Leisch, F.; Prohaska, T. Anal. Bioanal. Chem. 2013, 405, 2943. https://doi.org/10.1007/s00216-012-6674-3
  65. Pointurier, F.; Pottin, A.-C.; Hubert, A. Anal. Chem. 2011, 83, 7841. https://doi.org/10.1021/ac201596t
  66. Garcia, C. C.; Lindener, H.; Bohelen, A. von; Vadla, C.; Niemax, K. J. Anal. At. Spectrom. 2008, 23, 470. https://doi.org/10.1039/b718845e
  67. Kristo, M. J.; Turney, S. J. Nucl. Instrum. Meth. Phys. Res. B 2013, 294, 656. https://doi.org/10.1016/j.nimb.2012.07.047
  68. Martinell, R. E.; Hamilton, T. F.; R. W. Williams,; Kehl, S. R. J. Radioanal. Nucl. Chem. 2009, 282, 343. https://doi.org/10.1007/s10967-009-0150-3
  69. Miyamoto, Y.; Suzuki, D.; Esaka, F.; Magara, M. Anal. Bioanal. Chem. 2015, 407, 7165. https://doi.org/10.1007/s00216-015-8880-2
  70. Balsley, S. D. IAEA symposium on International Safeguards 2010, IAEA-CN-184/278.
  71. Jeon, Y. S.; Park, Y. S.; Kim, J. S.; Park, Y. J.; Song, K. Asian J. Chem. 2014, 26, 4052.
  72. Wallenius, M.; Mayer, K.; Ray, I. Forensics Sci. Int. 2006, 156 , 55. https://doi.org/10.1016/j.forsciint.2004.12.029
  73. Büger, S.; Riciputi, L. R.; Turgeon, S.; Bostick, D.; McBay, E.; Lavelle, M. J. Alloys and Comp. 2007, 444, 660. https://doi.org/10.1016/j.jallcom.2006.11.019
  74. Lee, C. G.; Suzuki, D.; Esaka, F.; Magara, M.; Song, K. Talanta 2015, 141, 92. https://doi.org/10.1016/j.talanta.2015.03.060
  75. Wallenius, M.; Peerani, P.; Koch, L. J. Radioanal. Nucl. Chem. 2000, 246, 317. https://doi.org/10.1023/A:1006774524272
  76. Wallenius, M.; Mayer, K. Fresenius. J. Anal. Chem. 2000, 366, 234. https://doi.org/10.1007/s002160050046
  77. Varga, Z.; Suranyi, G. Appl. Rad. Isotopes 2009, 67, 516. https://doi.org/10.1016/j.apradiso.2008.12.006
  78. Quemet, A.; Maloubier, M.; Dalier, V.; Ruas, A. Int. J. Mass. Spectom. 2014, 374, 2.
  79. Mironov, V. P.; Matusevich, J. L.; Kudrajashov, V.P.; Anaich, P. I.; Zhurakov, V. V.; Boulyga, S. F.; Becker, J. S. Radiochim. Acta 2005, 93, 781. https://doi.org/10.1524/ract.2005.93.12.781
  80. Varga, Z.; Wallenius, M.; Mayer, K.; Keegan, E.; Millet, S. Anal. Chem. 2009, 81, 8327. https://doi.org/10.1021/ac901100e
  81. Krajko, J.; Varga, Z.; Yalcintas, E.; Wallenius, M.; Mayer, K. Talanta 2014, 129, 499. https://doi.org/10.1016/j.talanta.2014.06.022
  82. Keegan, Z. E.; Kristo, M. J.; Colella, M.; Robel, M; Williams, R.; Lindvall, R.; Eppich, G.; Roberts, S.; Borg, L.; Gaffney, A.; Plaue, J.; Wong, H.; Davis, J.; Loi, E.; Reinhard, M.; Hutcheon, I. Forensics Science International 2014, 240, 111. https://doi.org/10.1016/j.forsciint.2014.04.004
  83. Varga, Z.; Katona, R.; Stefanka, Z.; Wallenius, M.; Mayer, K.;Nicholl, A. Talanta 2010, 80, 1744. https://doi.org/10.1016/j.talanta.2009.10.018
  84. Stefanka, Z.; Katona, R.; Varga, Z. J. Anal. At. Spectrom. 2008, 23, 1030. https://doi.org/10.1039/b804199g
  85. Marin, R. C.; Sarkis, J. E. S.; Nascimento, M. R. L. J. Radioanal. Nucl. Chem. 2013, 295, 99. https://doi.org/10.1007/s10967-012-1980-y
  86. Potter, E. -K.; Stirling, C. H.; Wiechert, U. H.; Halliday, A. N.; Sptl, C. Int. J. Mass Spectrom. 2005, 240, 27. https://doi.org/10.1016/j.ijms.2004.10.007
  87. Nygren, U.; Rameback, H.; Nilsson, C. J. Radioanal. Nucl. Chem. 2007, 272, 45. https://doi.org/10.1007/s10967-006-6780-9
  88. Gaffney, A. M.; Hubert, A.; Kinman, W. S.; Magara, M.; Okubo, A.; Pointurier, F.; Schorzman, K. C.; Steiner, R. E.; Williams, R. W. J. Radioanal. Nucl. Chem. 2015, 307, 2055. https://doi.org/10.1007/s10967-015-4334-8
  89. Varga, Z.; Nicholl, A.; Wallenius, M.; Mayer, K. J. Radioanal. Nucl. Chem. 2016, 307, 1919. https://doi.org/10.1007/s10967-015-4418-5
  90. Tamborini, G.; Betti, M. Microchim. Acta 2000, 132, 411. https://doi.org/10.1007/s006040050088
  91. Han, S. H.; Varga, Z.; Krajko, J.; Wallenius, M.; Song, K.; Mayer, K. J. Anal. At. Spectrom. 2013, 28, 1919. https://doi.org/10.1039/c3ja50231g
  92. Krajko, J.; Varga, Z.; Wallenius, M.; Mayer, K.; Konings, R. J. Radioanal. Nucl. Chem. 2016, DOI 10.10007/s10967-016-4733-5. https://doi.org/10.10007/s10967-016-4733-5
  93. Betti, M.; Tamborini, G.; Koch, L. Anal. Chem. 1999, 71, 2616. https://doi.org/10.1021/ac981184r
  94. Tamborini, G.; Phinney, Buildstein, O.; Bette, M. Anal. Chem. 2002, 74, 6098. https://doi.org/10.1021/ac0259515
  95. Tamborini, G. Microchim. Acta 2004, 145, 237. https://doi.org/10.1007/s00604-003-0160-8
  96. Faure, A. -L.; Rodriguez, C.; Marie, O.; Aupiais, J.; Pointurier, F. J. Anal. At. Spectrom. 2014, 29, 145. https://doi.org/10.1039/C3JA50245G
  97. Fahey, A. J.; Ritchie, N. W. M.; Newbury, D. E.; Small, J. A. J. Radioanal. Nucl. Chem. 2010, 284, 575. https://doi.org/10.1007/s10967-010-0509-5
  98. Hedberg, P. M. L.; Peres, P.; Fernandes, F.; Renaud, L. J. Anal. At. Spectrom. 2015, 30, 2516. https://doi.org/10.1039/C5JA00382B
  99. Pibida, L.; McMahon, C. A.; Burshaw, B. A. Appl. Rad. Isotopes 2004, 60, 567. https://doi.org/10.1016/j.apradiso.2003.11.082
  100. Noto, T.; Tomita, H.; Furuta, Y.; Takamatsu, T.; Kawarabayashi, J.; Iguchi, T.; Wendt, K. J. Nucl. Sci. Tech. 2016, 53, 289. https://doi.org/10.1080/00223131.2015.1038663
  101. Ghosh, P.; Brand, W. A. Int. J. Mass Spectrom. 2003, 228, 1. https://doi.org/10.1016/S1387-3806(03)00289-6
  102. Ramirez, F.; Abdennar, A.; Sanpera, C.; Jover, L.; Wassenaar, L.; Hobsen, K.; Estuarine, A. Coatal and Shelf Science 2011, 92, 217. https://doi.org/10.1016/j.ecss.2010.12.035