Effect of functional group on activity and stability of lipase immobilized on silica-coated magnetite nanoparticles with different functional group

실리카 코팅된 자성 나노입자로의 효소 고정화에 사용된 작용기가 리파아제의 활성과 안정성에 미치는 영향

  • Lee, Hye Rin (Department of Advanced Materials & Chemical Engineering, Hannam University) ;
  • Kim, Moon Il (Department of BioNano Technology, Gachon University) ;
  • Hong, Sang Eun (Department of Chemistry, Hannam University) ;
  • Choi, Jaeyeong (Department of Chemistry, Hannam University) ;
  • Kim, Young Min (Department of Biological Sciences and Biotechnology, Hannam University) ;
  • Yoon, Kuk Ro (Department of Chemistry, Hannam University) ;
  • Lee, Seungho (Department of Chemistry, Hannam University) ;
  • Ha, Sung Ho (Department of Advanced Materials & Chemical Engineering, Hannam University)
  • 이혜린 (한남대학교 화공신소재공학과) ;
  • 김문일 (가천대학교 바이오나노학과) ;
  • 홍상은 (한남대학교 화학과) ;
  • 최재영 (한남대학교 화학과) ;
  • 김영민 (한남대학교 생명시스템과학과) ;
  • 윤국로 (한남대학교 화학과) ;
  • 이승호 (한남대학교 화학과) ;
  • 하성호 (한남대학교 화공신소재공학과)
  • Received : 2016.04.19
  • Accepted : 2016.06.17
  • Published : 2016.06.25


The present study investigated the immobilization of lipases on silica nanoparticles and silica-coated magnetite nanoparticles as supports with a functional group to enhance the stability of lipase. The influence of functional groups, such as the epoxy group and the amine group, on the activity and stability of immobilized lipase was also studied. The epoxy group and the amino group were introduced onto the surface of nanoparticles by glycidyl methacrylate and aminopropyl triethoxysilane, respectively. Immobilized Candida rugosa lipase on silica nanoparticles and silica-coated magnetite nanoparticles with a functional group showed slightly lower initial enzyme activities than free enzyme; however, the immobilized Candida rugosa lipase retained over 92 % of the initial activity, even after 3 times reuse. Lipase was also immobilized on the silica-coated magnetite nanoparticles by cross-linked enzyme aggregate (CLEA) using glutaraldehyde and covalent binding, respectively, were also studied. Immobilized Candida rugosa lipase on silica nanoparticles and silica-coated magnetite nanoparticles by CLEA and covalent binding showed higher enzyme activities than free enzyme, while immobilized Candida rugosa lipase retained over 73 % of the initial activity after 5 times reuse.


nanoparticle;silica-coated magnetite nanoparticles;lipase;immobilization;activity;stability


Grant : BK21플러스

Supported by : 한남대학교


  1. D. Napierska, L. C. Thomassen, D. Lison, J. A. Martens and P. H. Hoet, Part Fibre Toxicol., 7(1), 39-71 (2010).
  2. R. K. Iler, ‘The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica’, Wiley, New York, 1979.
  3. W. Stber, A. Fink and E. Bohn, J. Colloid Interface Sci., 26(1), 62-69 (1968).
  4. Y.-H. Lee, J.-O. Lee and K.-S. Chun, Anal. Sci. Technol., 23(6), 579-586 (2010).
  5. M. N. V. Ravi Kumar, M. Sameti, S. S. Mohapatra, X. Kong, R. F. Lockey, U. Bakowsky, G. Lindenblatt, H. Schmidt and C. M. Lehr, J. Nanosci. Nanotechnol., 4(7), 876-881 (2004).
  6. I. I. Slowing, J. L. Vivero-Escoto, C. W. Wu and V. S. Lin, Adv. Drug Deliv. Rev., 60(11), 1278-1288 (2008).
  7. M. I. Kim, H. O. Ham, S. D. Oh, H. G. Park, H. N. Chan and S. H. Choi, J. Mol. Catal. B: Enzym., 39(1-4), 62-68 (2006).
  8. O. Salata, J. Nanobiotechnology, 2, 3-8 (2004).
  9. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst and R. N. Muller, Chem. Rev., 108(6), 2064-2110 (2008).
  10. C. Sun, J. S. Lee and M. Zhang, Adv. Drug Delivery Rev., 60(11), 1252-1265 (2008).
  11. P. Xu, G. M. Zeng, D. L. Huang, C. L. Feng, S. Hu, M. H. Zhao, C. Lai, Z. Wei, C. Huang, G. X. Xie and Z. F. Liu, Sci. Total Environ., 424, 1-10 (2012).
  12. A. K. Johnson, A. M. Zawadzka, L. A. Deobald, R. L. Crawford and A. J. Paszczynski, J. Nanopart. Res., 10(6), 1009-1025 (2008).
  13. Y. Sahoo, H. Pizem, T. Fried, D. Golodnitsky, L. Burstein, C. N. Sukenik and G. Markovich, Langmuir, 17(25), 7907-7911 (2001).
  14. H. Lee, E. Lee, D. K. Kim, N. K. Jang, Y. Y. Jeong and S. Jon, J. Am. Chem. Soc., 128 (22), 7383-7389 (2006).
  15. H.-L. Liu, S. P. Ko, J.-H. Wu, M.-H. Jung, J. H. Min, J. H. Lee, B. H. An and Y. K. Kim, J. Magn. Magn. Mater., 310(2), 815-817 (2007).
  16. Y. Lee, J. Lee, C. J. Bae, J.-G. Park, H. -J. Noh, J. -H. Park and T. Hyeon, Adv. Funct. Mater., 15(3), 503-509 (2005).
  17. J. W. Lee, Y. J. Lee, H. B. Na, T. Y. Yu, H. Kim, S. M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. S. Hwang, J. G. Park, J. B. Kim and T. H. Hyeon, Small, 4(1), 143-152 (2008).
  18. P. Villeneuve, J. M. Muderhwa, J. Graille and M. J. Haas, J. Mol. Catal. B: Enzym., 9(4-6), 113-148 (2000).
  19. S. H. Ha, M. N. Lan, S. H. Lee, S. M. Hwang and Y.-M. Koo, Enzym. Microb. Technol., 41(4), 480-483 (2007).
  20. S. H. Ha, M. N. Lan and Y.-M. Koo, Enzym. Microb. Technol., 47(1-2), 6-10 (2010).
  21. S. H. Ha, S. H. Lee, D. T. Dang, M. S. Kwon, W.-J. Chang, Y. J. Yu, I. S. Byun and Y.-M. Koo, Korean J. Chem. Eng., 25(2), 291-294 (2008).
  22. W. Tischer and F. Wedekind, Top. Curr. Chem., 200, 95-126 (1999).
  23. J. M. Guisan, 'Immobilization of Enzymes and Cells', 2nd Ed., Humana Press, New Jersey, 2006.
  24. M. I. Kim, J. B. Kim, J. W. Kim, S. J. Shin, H. B. Na, T. H. Hyeon, H. G. Park and H. N. Chang, Micropor. Mesopor. Mater., 111(1-3), 18-23 (2008).
  25. M. I. Kim, J. B. Kim, J. W, Lee, H. Jia, H. B. Na, J. K. Youn, J. H. Kwak and A. Dohnalkova, Biotechnol. Bioeng., 96(2), 210-218 (2007).
  26. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, J. Biol. Chem. 193, 265-275 (1951).
  27. D. T. Dang, S. H. Ha, S.-M. Lee, W. -J. Chang and Y.-M. Koo, J. Mol. Catal. B: Enzym., 45(3-4), 118-121 (2007).