DOI QR코드

DOI QR Code

A SUPER-JUPITER MICROLENS PLANET CHARACTERIZED BY HIGH-CADENCE KMTNET MICROLENSING SURVEY OBSERVATIONS OF OGLE-2015-BLG-0954

SHIN, I.-G.;RYU, Y.-H.;UDALSKI, A.;ALBROW, M.;CHA, S.-M.;CHOI, J.-Y.;CHUNG, S.-J.;HAN, C.;HWANG, K.-H.;JUNG, Y.K.;KIM, D.-J.;KIM, S.-L.;LEE, C.-U.;LEE, Y.;PARK, B.-G.;PARK, H.;POGGE, R.W.;YEE, J.C.;PIETRUKOWICZ, P.;MROZ, P.;KOZLOWSKI, S.;POLESKI, R.;SKOWRON, J.;SOSZYNSKI, I.;SZYMANSKI, M.K.;ULACZYK, K.;WYRZYKOWSKI, L.;PAWLAK, M.;GOULD, A.

  • Received : 2016.02.27
  • Accepted : 2016.04.27
  • Published : 2016.06.30

Abstract

We report the characterization of a massive (mp = 3.9±1.4Mjup) microlensing planet (OGLE-2015-BLG-0954Lb) orbiting an M dwarf host (M = 0.33 ± 0.12M) at a distance toward the Galactic bulge of $0.6^{+0.4}_{-0.2}kpc$, which is extremely nearby by microlensing standards. The planet-host projected separation is a⊥ ~ 1.2AU. The characterization was made possible by the wide-field (4 deg2) high cadence (Γ = 6 hr–1) monitoring of the Korea Microlensing Telescope Network (KMTNet), which had two of its three telescopes in commissioning operations at the time of the planetary anomaly. The source crossing time t* = 16 min is among the shortest ever published. The high-cadence, wide-field observations that are the hallmark of KMTNet are the only way to routinely capture such short crossings. High-cadence resolution of short caustic crossings will preferentially lead to mass and distance measurements for the lens. This is because the short crossing time typically implies a nearby lens, which enables the measurement of additional effects (bright lens and/or microlens parallax). When combined with the measured crossing time, these effects can yield planet/host masses and distance.

Keywords

gravitational microlensing;planets

References

  1. Alard, C., & Lupton, R. H. 1998, A Method for Optimal Image Subtraction, ApJ, 503, 325 https://doi.org/10.1086/305984
  2. Albrow, M. D., Horne, K., Bramich, D. M., et al., 2009, Difference Imaging Photometry of Blended Gravitational Microlensing Events with a Numerical Kernel, MNRAS, 397, 2099 https://doi.org/10.1111/j.1365-2966.2009.15098.x
  3. Bennett, D. P., Bhattacharya, A., Anderson, J., et al. 2015, Confirmation of the Planetary Microlensing Signal and Star and Planet Mass Determinations for Event OGLE-2005-BLG-169, ApJ, 808, 169 https://doi.org/10.1088/0004-637X/808/2/169
  4. Batista, V., Beaulieu, J.-P., Bennett, D. P., et al. 2015, Confirmation of the OGLE-2005-BLG-169 Planet Signature and Its Characteristics with Lens-Source Proper Motion Detection, ApJ, 808, 170 https://doi.org/10.1088/0004-637X/808/2/170
  5. Bennett, D. P., Bond, I. A., Udalski, A., et al., A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192, ApJ, 684, 663 https://doi.org/10.1086/589940
  6. Bennett, D. P., Rhie, S. H., Nikolaev, S., et al. 2010, Masses and Orbital Constraints for the OGLE-2006-BLG-109Lb,c Jupiter/Saturn Analog Planetary System, ApJ, 713, 837 https://doi.org/10.1088/0004-637X/713/2/837
  7. Bensby, T., Yee, J. C., Feltzing, S., et al. 2013, Chemical Evolution of the Galactic Bulge as Traced by Microlensed Dwarf and Subgiant Stars. V. Evidence for a Wide Age Distribution and a Complex MDF, A&A, 549, A147 https://doi.org/10.1051/0004-6361/201220678
  8. Bessell, M. S., & Brett, J. M. 1988, JHKLM Photometry - Standard Systems, Passbands, and Intrinsic Colors, PASP, 100, 1134 https://doi.org/10.1086/132281
  9. Bond, I. A., Udalski, A., Jaroszyński, M., et al. 2004, OGLE 2003-BLG-235/MOA 2003-BLG-53: A Planetary Microlensing Event, ApJ, 606, L155 https://doi.org/10.1086/420928
  10. Dominik, M. 1999, The Binary Gravitational Lens and Its Extreme Cases, A&A, 349, 108
  11. Gaudi, B. S., Bennett, D. P., Udalski, A., et al. 2008, Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing, Science, 319, 927 https://doi.org/10.1126/science.1151947
  12. Gould, A. 1992, Extending the MACHO Search to about 10 exp 6 Solar Masses, ApJ, 392, 442 https://doi.org/10.1086/171443
  13. Gould, A., & Loeb, A. 1992, Discovering planetary systems through gravitational microlenses, ApJ, 396, 104 https://doi.org/10.1086/171700
  14. Henderson, C. B., Gaudi, B. S., Han, C., et al. 2014, Optimal Survey Strategies and Predicted Planet Yields for the Korean Microlensing Telescope Network, ApJ, 794, 52 https://doi.org/10.1088/0004-637X/794/1/52
  15. Gould, A., Udalski, A., Monard, B., et al. 2013, The Extreme Microlensing Event OGLE-2007-BLG-224: Terrestrial Parallax Observations of a Thick-Disk Brown Dwarf, ApJ, 698, L147 https://doi.org/10.1088/0004-637X/698/2/L147
  16. Gould, A., Dong, S., Gaudi, B. S., et al. 2010, Frequency of Solar-Like Systems and of Ice and Gas Giants Beyond the Snow Line from High-Magnification Microlensing Events in 2005-2008, ApJ, 720, 1073 https://doi.org/10.1088/0004-637X/720/2/1073
  17. Griest, K., & Safizadeh, N. 1998, The Use of High-Magnification Microlensing Events in Discovering Extrasolar Planets, ApJ, 500, 37 https://doi.org/10.1086/305729
  18. Kervella, P., Thévenin, F., Di Folco, E., & Ségransan, D. 2004, The Angular Sizes of Dwarf Stars and Subgiants. Surface Brightness Relations Calibrated by Interferometry, A&A, 426, 297 https://doi.org/10.1051/0004-6361:20035930
  19. Kim, S.-L., Lee, C.-U., Park, B.-G., et al. 2016, KMTNet: A Network of 1.6 m Wide-Field Optical Telescopes Installed at Three Southern Observatories, JKAS, 49, 37
  20. Nataf, D. M., Gould, A., Fouqué, P., et al. 2013, Reddening and Extinction toward the Galactic Bulge from OGLE-III: The Inner Milky Way's RV ∼ 2:5 Extinction Curve, ApJ, 769, 88 https://doi.org/10.1088/0004-637X/769/2/88
  21. Raghavan, D., McAlister, H. A., Henry, T. J., et al. 2010, A Survey of Stellar Families: Multiplicity of Solar-Type Stars, ApJS, 190, 1 https://doi.org/10.1088/0067-0049/190/1/1
  22. Schechter, P. L., Mateo, M., & Saha, A. 1993, DOPHOT, a CCD Photometry Program: Description and Tests, PASP, 105, 1342 https://doi.org/10.1086/133316
  23. Shvartzvald, Y., & Maoz, D. 2012, Second-Generation Microlensing Planet Surveys: a Realistic Simulation, MNRAS, 419, 3631 https://doi.org/10.1111/j.1365-2966.2011.20014.x
  24. Szymański, M. K., Udalski, A., Soszyński, I., et al. 2011, The Optical Gravitational Lensing Experiment. OGLE-III Photometric Maps of the Galactic Bulge Fields, Acta Astron., 61, 83
  25. Shvartzvald, Y., Udalski, A., Gould, A., et al. 2015, Spitzer Microlens Measurement of a Massive Remnant in a Well-Separated Binary, ApJ, 814, 111 https://doi.org/10.1088/0004-637X/814/2/111
  26. Shvartzvald, Y., Maoz, D., Udalski, A., et al. 2016, The Frequency of Snowline-Region Planets from Four Years of OGLE-MOA-Wise Second-Generation Microlensing, MNRAS, 457, 4089 https://doi.org/10.1093/mnras/stw191
  27. Skowron, J., Udalski, A., Szymański, M. K., et al. 2013, New Method to Measure Proper Motions of Microlensed Sources: Application to Candidate Free-floating-planet Event MOA-2011-BLG-262, ApJ, 785, 156 https://doi.org/10.1088/0004-637X/785/2/156
  28. Udalski, A. 2003, The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey, Acta Astron., 53, 291
  29. Udalski, A., Szymański, M., Kaluzny, J., et al. 1994, The Optical Gravitational Lensing Experiment. The Early Warning System: Real Time Microlensing, Acta Astron., 44, 227
  30. Yee, J. C., Udalski, A., Sumi, T., et al. 2009, Extreme Magnification Microlensing Event OGLE-2008-BLG-279: Strong Limits on Planetary Companions to the Lens Star, ApJ, 703, 2082 https://doi.org/10.1088/0004-637X/703/2/2082
  31. Yee, J. C., Svartzvald, Y., Gal-Yam, A., et al. 2012, MOA-2011-BLG-293Lb: A Testbed for Pure Survey Microlensing Planet Detections, ApJ, 755, 102 https://doi.org/10.1088/0004-637X/755/2/102
  32. Yoo, J., DePoy, D. L., Gal-Yam, A., et al. 2004, OGLE-2003-BLG-262: Finite-Source Effects from a Point-Mass Lens, ApJ, 603, 139 https://doi.org/10.1086/381241
  33. Zhu, W., Penny, M., Mao, S., Gould, A., & Gendron, R. 2014, Predictions for Microlensing Planetary Events from Core Accretion Theory, ApJ, 788, 73 https://doi.org/10.1088/0004-637X/788/1/73
  34. Zhu, W., Calchi Novati, S., Gould, A., et al. 2016, Mass Measurements of Isolated Objects from Space-Based Microlensing, ApJ, in press, arXiv:1510.02097

Cited by

  1. OGLE-2015-BLG-1482L: The First Isolated Low-mass Microlens in the Galactic Bulge vol.838, pp.2, 2017, https://doi.org/10.3847/1538-4357/aa67fa
  2. OGLE-2016-BLG-0596Lb: A High-mass Planet from a High-magnification Pure-survey Microlensing Event vol.153, pp.4, 2017, https://doi.org/10.3847/1538-3881/aa5da2
  3. OGLE-2016-BLG-0263Lb: Microlensing Detection of a Very Low-mass Binary Companion through a Repeating Event Channel vol.154, pp.4, 2017, https://doi.org/10.3847/1538-3881/aa859a
  4. OGLE-2013-BLG-1761Lb: A Massive Planet around an M/K Dwarf vol.154, pp.1, 2017, https://doi.org/10.3847/1538-3881/aa73da
  5. OGLE-2016-BLG-1003: First Resolved Caustic-crossing Binary-source Event Discovered by Second-generation Microlensing Surveys vol.841, pp.2, 2017, https://doi.org/10.3847/1538-4357/aa7057
  6. MOA Data Reveal a New Mass, Distance, and Relative Proper Motion for Planetary System OGLE-2015-BLG-0954L vol.154, pp.2, 2017, https://doi.org/10.3847/1538-3881/aa7aee
  7. KMT-2016-BLG-1397b: KMTNET-only Discovery of a Microlens Giant Planet vol.156, pp.5, 2018, https://doi.org/10.3847/1538-3881/aae537

Acknowledgement

Grant : 우주감시기술개발

Supported by : 한국천문연구원