• Received : 2016.03.20
  • Accepted : 2016.05.09
  • Published : 2016.06.30


The Toothbrush radio relic associated with the merging cluster 1RXS J060303.3 is presumed to be produced by relativistic electrons accelerated at merger-driven shocks. Since the shock Mach number inferred from the observed radio spectral index, Mradio ≈ 2.8, is larger than that estimated from X-ray observations, MX ≲ 1.5, we consider the re-acceleration model in which a weak shock of Ms ≈ 1.2 - 1.5 sweeps through the intracluster plasma with a preshock population of relativistic electrons. We find the models with a power-law momentum spectrum with the slope, s ≈ 4.6, and the cutoff Lorentz factor, γe,c ≈ 7-8×104 can reproduce reasonably well the observed profiles of radio uxes and integrated radio spectrum of the head portion of the Toothbrush relic. This study confirms the strong connection between the ubiquitous presence of fossil relativistic plasma originated from AGNs and the shock-acceleration model of radio relics in the intracluster medium.


acceleration of particles;cosmic rays;galaxies;clusters;general;shock waves


  1. Brunetti, G., & Jones, T. W. 2014, Cosmic Rays in Galaxy Clusters and Their Nonthermal Emission, Int. J. Mod. Phys. D, 23, 30007
  2. Akamatsu, H., & Kawahara, H. 2013, Systematic X-Ray Analysis of Radio Relic Clusters with Suzaku, PASJ, 65, 16
  3. Brüggen, M., Bykov, A., Ryu, D., & Röttgering, H. 2012, Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts, Space Sci. Rev., 166, 187
  4. Clarke, T. E., Randall S. W., Sarazin, C. L., et al. 2013, Chandra View of the Ultra-Steep Spectrum Radio Source in A2443: Merger Shock-Induced Compression of Fossil Radio Plasma?, ApJ, 772, 84
  5. de Gasperin, F., Ogrean, G. A., van Weeren, R. J., et al. 2015, Abell 1033: Birth of a Radio Phoenix, MNRAS, 448, 2197
  6. Drury, L. O’C. 1983, An Introduction to the Theory of Diffusive Shock Acceleration of Energetic Particles in Tenuous Plasmas, Rept. Prog. Phys., 46, 973
  7. Ensslin, T. A. 1999, Radio Ghosts, in Ringberg Workshop on Diffuse Thermal and Relativistic Plasma in Galaxy Clusters, ed. P. S. H. Böhringer, L. Feretti, MPE Report 271, 275
  8. Ensslin, T. A., Biermann, P. L., Kleing, U., & Kohle, S. 1998, Cluster Radio Relics as a Tracer of Shock Waves of the Large-Scale Structure Formation, A&A, 332, 395
  9. Ensslin, T. A., & Brüggen, M. 2002, On the Formation of Cluster Radio Relics, MNRAS, 331, 1011
  10. Ensslin, T. A., & Gopal-Krishna. 2001, Reviving Fossil Radio Plasma in Clusters of Galaxies by Adiabatic Compression in Environmental Shock Waves, A&A, 366, 26
  11. Kang, H. 2011, Energy Spectrum of Nonthermal Electrons Accelerated at a Plane Shock, JKAS, 44, 49
  12. Feretti, L., Giovannini, G., Govoni, F., & Murgia, M. 2012, Clusters of Galaxies: Observational Properties of the Diffuse Radio Emission, A&A Rev., 20, 54
  13. Hong, E. W., Ryu, D., Kang, H., & Cen, R. 2014, Shock Waves and Cosmic Ray Acceleration in the Outskirts of Galaxy Clusters, ApJ, 785, 133
  14. Itahana, M., Takizawa, M., Akamatsu, H., et al. 2015, Suzaku Observations of the Galaxy Cluster 1RXS J0603.3+4214: Implications of Particle Acceleration Processes in the "Toothbrush" Radio Relic, PASJ, 67, 113
  15. Kang, H. 2015a, Nonthermal Radiation from Relativistic Electrons Accelerated at Spherically Expanding Shocks, JKAS, 48, 9
  16. Kang, H. 2015b, Radio Emission from Weak Spherical Shocks in the Outskirts of Galaxy Clusters, JKAS, 48, 155
  17. Kang, H., & Jones, T. W. 2006, Numerical Studies of Diffusive Shock Acceleration at Spherical Shocks, Astropart. Phys., 25, 246
  18. Kang, H., & Ryu, D. 2011, Re-Acceleration of Non-Thermal Particles at Weak Cosmological Shock Waves, ApJ, 764, 95
  19. Kang, H., & Ryu, D. 2015, Curved Radio Spectra of Weak Cluster Shocks, ApJ, 809, 186
  20. Kang, H., & Ryu, D. 2016, Re-Acceleration Model for Radio Relics with Spectral Curvature, ApJ, 823, 13
  21. Kang, H., Ryu, D., & Jones, T. W. 2012, Diffusive Shock Acceleration Simulations of Radio Relics, ApJ, 756, 97
  22. Kang, H., Vahe, P., Ryu, D., & Jones, T. W. 2014, Injection of κ-like Suprathermal Particles into Diffusive Shock Acceleration, ApJ, 788, 141
  23. Russell, H. R., van Weeren, R. J., Edge, A. C., et al. 2011 A Merger Mystery: No Extended Radio Emission in the Merging Cluster Abell 2146, MNRAS, 417, L1
  24. Kempner, J. C., Blanton, E. L., Clarke, T. E., et al. 2004, Conference Note: A Taxonomy of Extended Radio Sources in Clusters of Galaxies, in The Riddle of Cooling Flows in Galaxies and Clusters of galaxies, ed. T. Reiprich, J. Kempner, & N. Soker, 335
  25. Ogrean, G. A., Brüggen, M., van Weeren, R., Röttgering, H., Croston, J. H., & Hoeft, M. 2013, Challenges to Our Understanding of Radio Relics: X-Ray Observations of the Toothbrush Cluster, MNRAS, 433, 812
  26. Pinzke, A., Oh, S. P., & Pfrommer, C. 2013, Giant Radio Relics in Galaxy Clusters: Re-Acceleration of Fossil Relativistic Electrons?, MNRAS, 435, 1061
  27. Ryu, D., Kang, H., Hallman, E., & Jones, T. W. 2003, Cosmological Shock Waves and Their Role in the Large-Scale Structure of the Universe, ApJ, 593, 599
  28. Sarazin, C. L. 1988, X-Ray Emission from Clusters of Galaxies (Cambridge: Cambridge University Press)
  29. Shimwell, T. W., Markevitch, M., Brown, S., Feretti, L, et al., 2015, Another Shock for the Bullet Cluster, and the Source of Seed Electrons for Radio Relics, MNRAS, 449, 1486
  30. Skilling, J. 1975, Cosmic Ray Streaming. I - Effect of Alfvén Waves on Particles, MNRAS, 172, 557
  31. Skillman, S. W., Hallman, E. J., O’Shea, W., Burns, J. O., Smith, B. D., & Turk, M. J. 2011, Galaxy Cluster Radio Relics in Adaptive Mesh Refinement Cosmological Simulations: Relic Properties and Scaling Relationships, ApJ, 735, 96
  32. Slee, O. B., Roy, A. L., Murgia, M., Andernach, H., & Ehle, M. 2001, Four Extreme Relic Radio Sources in Clusters of Galaxies, AJ, 122, 1172
  33. van Weeren, R., Röttgering, H. J. A., Brüggen, M., & Hoeft, M. 2010, Particle Acceleration on Megaparsec Scales in a Merging Galaxy Cluster, Science, 330, 347
  34. Stroe, A., Shimwell, T. W., Rumsey, et al. 2016, The Widest Frequency Radio Relic Spectra: Observations from 150 MHz to 30 GHz, MNRAS, 455, 2402
  35. Trasatti, M., Akamatsu, H., Lovisari, L., Klein, U., Bonafede, A., Brggen, M., Dallacasa, D., & Clarke, T. 2015, The Radio Relic in Abell 2256: Overall Spectrum and Implications for Electron Acceleration, A&A, 575, A45
  36. van Weeren, R., Brunetti, G., Brüggen, M., et al. 2016, LOFAR, VLA, and CHANDRA Observations of the Toothbrush Galaxy Cluster, ApJ, 818, 204
  37. van Weeren, R. J., Röttgering, H. J. A., & Brüggen, M. 2011b, Diffuse Steep-Spectrum Sources from the 74 MHz VLSS Survey, A&A, 527, A114
  38. van Weeren, R., Röttgering, H. J. A., Intema, H. T., Rudnick, L., Brüggen, M., Hoeft, M., & Oonk, J. B. R. 2012, The "Toothbrush-Relic": Evidence for a Coherent Linear 2-Mpc Scale Shock Wave in a Massive Merging Galaxy Cluster?, A&A, 546, 124
  39. Vazza, F., Brunetti, G., & Gheller, C. 2009, Shock Waves in Eulerian Cosmological Simulations: Main Properties and Acceleration of Cosmic Rays, MNRAS, 395, 1333

Cited by

  1. Shock Acceleration Model for the Toothbrush Radio Relic vol.840, pp.1, 2017,
  2. Diffuse Radio Emission from Galaxy Clusters vol.215, pp.1, 2019,


Grant : 기본연구지원

Supported by : 부산대학교